CNDP2: An Enzyme Linking Metabolism and Cardiovascular Diseases?

Brooks GA. Role of the Heart in Lactate Shuttling. Front Nutr. 2021;8: 663560. https://doi.org/10.3389/fnut.2021.663560.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ouyang J, Wang H, Huang J. The role of lactate in cardiovascular diseases. Cell Commun Signal. 2023;21:317. https://doi.org/10.1186/s12964-023-01350-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Levy B. Lactic Acidosis and Hyperlactatemia. In: Vincent J-L, editor. Intensive Care Medicine. New York, NY: Springer; 2006. p. 88–98.

Chapter  Google Scholar 

Wu P, Zhu T, Huang Y, et al. Current understanding of the contribution of lactate to the cardiovascular system and its therapeutic relevance. Front Endocrinol. 2023;14:1205442. https://doi.org/10.3389/fendo.2023.1205442.

Article  Google Scholar 

Li X, Yang Y, Zhang B, et al. Lactate metabolism in human health and disease. Signal Transduct Target Ther. 2022;7:1–22. https://doi.org/10.1038/s41392-022-01151-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ørn S, van Hall G. Does a normal peripheral lactate value always indicate an aerobic tissue metabolism? Eur J Heart Fail. 2017;19:1034–5. https://doi.org/10.1002/ejhf.863.

Article  PubMed  Google Scholar 

Bellomo R. Bench-to-bedside review: lactate and the kidney. Crit Care Lond Engl. 2002;6:322–6. https://doi.org/10.1186/cc1518.

Article  Google Scholar 

Vermeulen RP, Hoekstra M, Nijsten MW, et al. Clinical correlates of arterial lactate levels in patients with ST-segment elevation myocardial infarction at admission: a descriptive study. Crit Care. 2010;14:R164. https://doi.org/10.1186/cc9253.

Article  PubMed  PubMed Central  Google Scholar 

Park IH, Cho HK, Oh JH, et al. Clinical Significance of Serum Lactate in Acute Myocardial Infarction: A Cardiac Magnetic Resonance Imaging Study. J Clin Med. 2021;10:5278. https://doi.org/10.3390/jcm10225278.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kawase T, Toyofuku M, Higashihara T, et al. Validation of lactate level as a predictor of early mortality in acute decompensated heart failure patients who entered intensive care unit. J Cardiol. 2015;65:164–70. https://doi.org/10.1016/j.jjcc.2014.05.006.

Article  PubMed  Google Scholar 

Uyar H, Yesil E, Karadeniz M, et al. The Effect of High Lactate Level on Mortality in Acute Heart Failure Patients With Reduced Ejection Fraction Without Cardiogenic Shock. Cardiovasc Toxicol. 2020;20:361–9. https://doi.org/10.1007/s12012-020-09563-9.

Article  CAS  PubMed  Google Scholar 

Park IH, Yang JH, Jang WJ, et al. Clinical significance of lactate clearance in patients with cardiogenic shock: results from the RESCUE registry. J Intensive Care. 2021;9:63. https://doi.org/10.1186/s40560-021-00571-7.

Article  PubMed  PubMed Central  Google Scholar 

Rissel R, Koelm S, Schepers M, et al. Elevated lactate levels and impaired lactate clearance during extracorporeal life support (ECLS) are associated with poor outcome in cardiac surgery patients. PLoS ONE. 2022;17: e0278139. https://doi.org/10.1371/journal.pone.0278139.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kliegel A, Losert H, Sterz F, et al. Serial lactate determinations for prediction of outcome after cardiac arrest. Medicine (Baltimore). 2004;83:274–9. https://doi.org/10.1097/01.md.0000141098.46118.4c.

Article  CAS  PubMed  Google Scholar 

Varis E, Pettilä V, Poukkanen M, et al. Evolution of Blood Lactate and 90-Day Mortality in Septic Shock. A Post Hoc Analysis of the FINNAKI Study. Shock Augusta Ga. 2017;47:574–81. https://doi.org/10.1097/SHK.0000000000000772.

Article  PubMed  Google Scholar 

Jansen RS, Addie R, Merkx R, et al. N-lactoyl-amino acids are ubiquitous metabolites that originate from CNDP2-mediated reverse proteolysis of lactate and amino acids. Proc Natl Acad Sci U S A. 2015;112:6601–6. https://doi.org/10.1073/pnas.1424638112.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li VL, He Y, Contrepois K, et al. An exercise-inducible metabolite that suppresses feeding and obesity. Nature. 2022;606:785–90. https://doi.org/10.1038/s41586-022-04828-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lenney JF, Peppers SC, Kucera-Orallo CM, George RP. Characterization of human tissue carnosinase. Biochem J. 1985;228:653–60.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boldyrev AA, Aldini G, Derave W. Physiology and pathophysiology of carnosine. Physiol Rev. 2013;93:1803–45. https://doi.org/10.1152/physrev.00039.2012.

Article  CAS  PubMed  Google Scholar 

Teufel M, Saudek V, Ledig J-P, et al. Sequence Identification and Characterization of Human Carnosinase and a Closely Related Non-specific Dipeptidase *. J Biol Chem. 2003;278:6521–31. https://doi.org/10.1074/jbc.M209764200.

Article  CAS  PubMed  Google Scholar 

Uhlén M, Fagerberg L, Hallström BM, et al Proteomics Tissue-based map of the human proteome. Science. 2015 347:1260419. https://doi.org/10.1126/science.1260419

Lonsdale J, Thomas J, Salvatore M, et al. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013;45:580–5. https://doi.org/10.1038/ng.2653.

Article  CAS  Google Scholar 

Aas V, Øvstebø R, Brusletto BS, et al. Distinct microRNA and protein profiles of extracellular vesicles secreted from myotubes from morbidly obese donors with type 2 diabetes in response to electrical pulse stimulation. Front Physiol. 2023;14:1143966. https://doi.org/10.3389/fphys.2023.1143966.

Article  PubMed  PubMed Central  Google Scholar 

Kim JT, Li VL, Terrell SM, et al. Family-wide Annotation of Enzymatic Pathways by Parallel In Vivo Metabolomics. Cell Chem Biol. 2019;26:1623-1629.e3. https://doi.org/10.1016/j.chembiol.2019.09.009.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Okumura N, Takao T. The zinc form of carnosine dipeptidase 2 (CN2) has dipeptidase activity but its substrate specificity is different from that of the manganese form. Biochem Biophys Res Commun. 2017;494:484–90. https://doi.org/10.1016/j.bbrc.2017.10.100.

Article  CAS  PubMed  Google Scholar 

Kobayashi S, Homma T, Okumura N, et al. Carnosine dipeptidase II (CNDP2) protects cells under cysteine insufficiency by hydrolyzing glutathione-related peptides. Free Radic Biol Med. 2021;174:12–27. https://doi.org/10.1016/j.freeradbiomed.2021.07.036.

Article  CAS  PubMed  Google Scholar 

Andreyeva EN, Ogienko AA, Dubatolova TD, et al. A toolset to study functions of Cytosolic non-specific dipeptidase 2 (CNDP2) using Drosophila as a model organism. BMC Genet. 2019;20:31. https://doi.org/10.1186/s12863-019-0726-z.

Article  PubMed  PubMed Central  Google Scholar 

Yamakawa-Kobayashi K, Ohhara Y, Kawashima T, et al. Loss of CNDP causes a shorter lifespan and higher sensitivity to oxidative stress in Drosophila melanogaster. Biomed Res Tokyo Jpn. 2020;41:131–8. https://doi.org/10.2220/biomedres.41.131.

Article  CAS  Google Scholar 

Kaur H, Kumar C, Junot C, et al. Dug1p Is a Cys-Gly peptidase of the gamma-glutamyl cycle of Saccharomyces cerevisiae and represents a novel family of Cys-Gly peptidases. J Biol Chem. 2009;284:14493–502. https://doi.org/10.1074/jbc.M808952200.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif