Brooks GA. Role of the Heart in Lactate Shuttling. Front Nutr. 2021;8: 663560. https://doi.org/10.3389/fnut.2021.663560.
Article CAS PubMed PubMed Central Google Scholar
Ouyang J, Wang H, Huang J. The role of lactate in cardiovascular diseases. Cell Commun Signal. 2023;21:317. https://doi.org/10.1186/s12964-023-01350-7.
Article CAS PubMed PubMed Central Google Scholar
Levy B. Lactic Acidosis and Hyperlactatemia. In: Vincent J-L, editor. Intensive Care Medicine. New York, NY: Springer; 2006. p. 88–98.
Wu P, Zhu T, Huang Y, et al. Current understanding of the contribution of lactate to the cardiovascular system and its therapeutic relevance. Front Endocrinol. 2023;14:1205442. https://doi.org/10.3389/fendo.2023.1205442.
Li X, Yang Y, Zhang B, et al. Lactate metabolism in human health and disease. Signal Transduct Target Ther. 2022;7:1–22. https://doi.org/10.1038/s41392-022-01151-3.
Article CAS PubMed PubMed Central Google Scholar
Ørn S, van Hall G. Does a normal peripheral lactate value always indicate an aerobic tissue metabolism? Eur J Heart Fail. 2017;19:1034–5. https://doi.org/10.1002/ejhf.863.
Bellomo R. Bench-to-bedside review: lactate and the kidney. Crit Care Lond Engl. 2002;6:322–6. https://doi.org/10.1186/cc1518.
Vermeulen RP, Hoekstra M, Nijsten MW, et al. Clinical correlates of arterial lactate levels in patients with ST-segment elevation myocardial infarction at admission: a descriptive study. Crit Care. 2010;14:R164. https://doi.org/10.1186/cc9253.
Article PubMed PubMed Central Google Scholar
Park IH, Cho HK, Oh JH, et al. Clinical Significance of Serum Lactate in Acute Myocardial Infarction: A Cardiac Magnetic Resonance Imaging Study. J Clin Med. 2021;10:5278. https://doi.org/10.3390/jcm10225278.
Article CAS PubMed PubMed Central Google Scholar
Kawase T, Toyofuku M, Higashihara T, et al. Validation of lactate level as a predictor of early mortality in acute decompensated heart failure patients who entered intensive care unit. J Cardiol. 2015;65:164–70. https://doi.org/10.1016/j.jjcc.2014.05.006.
Uyar H, Yesil E, Karadeniz M, et al. The Effect of High Lactate Level on Mortality in Acute Heart Failure Patients With Reduced Ejection Fraction Without Cardiogenic Shock. Cardiovasc Toxicol. 2020;20:361–9. https://doi.org/10.1007/s12012-020-09563-9.
Article CAS PubMed Google Scholar
Park IH, Yang JH, Jang WJ, et al. Clinical significance of lactate clearance in patients with cardiogenic shock: results from the RESCUE registry. J Intensive Care. 2021;9:63. https://doi.org/10.1186/s40560-021-00571-7.
Article PubMed PubMed Central Google Scholar
Rissel R, Koelm S, Schepers M, et al. Elevated lactate levels and impaired lactate clearance during extracorporeal life support (ECLS) are associated with poor outcome in cardiac surgery patients. PLoS ONE. 2022;17: e0278139. https://doi.org/10.1371/journal.pone.0278139.
Article CAS PubMed PubMed Central Google Scholar
Kliegel A, Losert H, Sterz F, et al. Serial lactate determinations for prediction of outcome after cardiac arrest. Medicine (Baltimore). 2004;83:274–9. https://doi.org/10.1097/01.md.0000141098.46118.4c.
Article CAS PubMed Google Scholar
Varis E, Pettilä V, Poukkanen M, et al. Evolution of Blood Lactate and 90-Day Mortality in Septic Shock. A Post Hoc Analysis of the FINNAKI Study. Shock Augusta Ga. 2017;47:574–81. https://doi.org/10.1097/SHK.0000000000000772.
Jansen RS, Addie R, Merkx R, et al. N-lactoyl-amino acids are ubiquitous metabolites that originate from CNDP2-mediated reverse proteolysis of lactate and amino acids. Proc Natl Acad Sci U S A. 2015;112:6601–6. https://doi.org/10.1073/pnas.1424638112.
Article CAS PubMed PubMed Central Google Scholar
Li VL, He Y, Contrepois K, et al. An exercise-inducible metabolite that suppresses feeding and obesity. Nature. 2022;606:785–90. https://doi.org/10.1038/s41586-022-04828-5.
Article CAS PubMed PubMed Central Google Scholar
Lenney JF, Peppers SC, Kucera-Orallo CM, George RP. Characterization of human tissue carnosinase. Biochem J. 1985;228:653–60.
Article CAS PubMed PubMed Central Google Scholar
Boldyrev AA, Aldini G, Derave W. Physiology and pathophysiology of carnosine. Physiol Rev. 2013;93:1803–45. https://doi.org/10.1152/physrev.00039.2012.
Article CAS PubMed Google Scholar
Teufel M, Saudek V, Ledig J-P, et al. Sequence Identification and Characterization of Human Carnosinase and a Closely Related Non-specific Dipeptidase *. J Biol Chem. 2003;278:6521–31. https://doi.org/10.1074/jbc.M209764200.
Article CAS PubMed Google Scholar
Uhlén M, Fagerberg L, Hallström BM, et al Proteomics Tissue-based map of the human proteome. Science. 2015 347:1260419. https://doi.org/10.1126/science.1260419
Lonsdale J, Thomas J, Salvatore M, et al. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013;45:580–5. https://doi.org/10.1038/ng.2653.
Aas V, Øvstebø R, Brusletto BS, et al. Distinct microRNA and protein profiles of extracellular vesicles secreted from myotubes from morbidly obese donors with type 2 diabetes in response to electrical pulse stimulation. Front Physiol. 2023;14:1143966. https://doi.org/10.3389/fphys.2023.1143966.
Article PubMed PubMed Central Google Scholar
Kim JT, Li VL, Terrell SM, et al. Family-wide Annotation of Enzymatic Pathways by Parallel In Vivo Metabolomics. Cell Chem Biol. 2019;26:1623-1629.e3. https://doi.org/10.1016/j.chembiol.2019.09.009.
Article CAS PubMed PubMed Central Google Scholar
Okumura N, Takao T. The zinc form of carnosine dipeptidase 2 (CN2) has dipeptidase activity but its substrate specificity is different from that of the manganese form. Biochem Biophys Res Commun. 2017;494:484–90. https://doi.org/10.1016/j.bbrc.2017.10.100.
Article CAS PubMed Google Scholar
Kobayashi S, Homma T, Okumura N, et al. Carnosine dipeptidase II (CNDP2) protects cells under cysteine insufficiency by hydrolyzing glutathione-related peptides. Free Radic Biol Med. 2021;174:12–27. https://doi.org/10.1016/j.freeradbiomed.2021.07.036.
Article CAS PubMed Google Scholar
Andreyeva EN, Ogienko AA, Dubatolova TD, et al. A toolset to study functions of Cytosolic non-specific dipeptidase 2 (CNDP2) using Drosophila as a model organism. BMC Genet. 2019;20:31. https://doi.org/10.1186/s12863-019-0726-z.
Article PubMed PubMed Central Google Scholar
Yamakawa-Kobayashi K, Ohhara Y, Kawashima T, et al. Loss of CNDP causes a shorter lifespan and higher sensitivity to oxidative stress in Drosophila melanogaster. Biomed Res Tokyo Jpn. 2020;41:131–8. https://doi.org/10.2220/biomedres.41.131.
Kaur H, Kumar C, Junot C, et al. Dug1p Is a Cys-Gly peptidase of the gamma-glutamyl cycle of Saccharomyces cerevisiae and represents a novel family of Cys-Gly peptidases. J Biol Chem. 2009;284:14493–502. https://doi.org/10.1074/jbc.M808952200.
留言 (0)