Hawi N, Liodakis E, Musolli D, Suero EM, Stuebig T, Claassen L, et al. Range of motion assessment of the shoulder and elbow joints using a motion sensing input device: a pilot study. Technol Health Care. 2014;22(2):289–95. https://doi.org/10.3233/THC-140831.
Yun Y-H, Jeong B-J, Seo M-J, Shin S-JJCS. Elb Simple Method Evaluating Range Shoulder Motion Using body Parts. 2015;18(1):13–20.
Mitsukane M, Suzuki K, Tabe R, Hasumi F, Fukushima D. Normalized hand-behind-back for the measurement of shoulder internal rotation. JSES Int. 2022;6(2):287–91. https://doi.org/10.1016/j.jseint.2021.12.001.
Mallon, W. J., Herring, C. L., Sallay, P. I., Moorman III, C. T., & Crim, J. R. (1996). Use of vertebral levels tomeasure presumed internal rotation at the shoulder: a radiographic analysis. Journal of shoulder and elbowsurgery, 5(4):299–306. https://doi.org/10.1016/s1058-2746(96)80057-7.
Han SH, Oh KS, Han KJ, Jo J, Lee DH. Accuracy of measuring tape and vertebral-level methods to determine shoulder internal rotation. Clin Orthop Relat Res. 2012;470(2):562–6. https://doi.org/10.1007/s11999-011-2112-7.
Edwards TB, Bostick RD, Greene CC, Baratta RV, Drez D. Interobserver and intraobserver reliability of the measurement of shoulder internal rotation by vertebral level. J Shoulder Elb Surg. 2002;11(1):40–2. https://doi.org/10.1067/mse.2002.119853.
Werner BC, Holzgrefe RE, Griffin JW, Lyons ML, Cosgrove CT, Hart JM, et al. Validation of an innovative method of shoulder range-of-motion measurement using a smartphone clinometer application. J Shoulder Elb Surg. 2014;23(11):e275–82. https://doi.org/10.1016/j.jse.2014.02.030.
Fan J, Gu F, Lv L, Zhang Z, Zhu C, Qi J, et al. Reliability of a human pose tracking algorithm for measuring upper limb joints: comparison with photography-based goniometry. BMC Musculoskelet Disord. 2022;23(1):877. https://doi.org/10.1186/s12891-022-05826-4.
Wang XM, Smith DT, Zhu Q. A webcam-based machine learning approach for three-dimensional range of motion evaluation. PLoS ONE. 2023;18(10):e0293178. https://doi.org/10.1371/journal.pone.0293178.
Contributors MJhgco-mm. Openmmlab pose estimation toolbox and benchmark. 2020.
Dutta A, Zisserman A. The VIA annotation software for images, audio and video. Proceedings of the 27th ACM international conference on multimedia2019. pp. 2276-9.
Chung SW, Oh JH, Gong HS, Kim JY, Kim SH. Factors affecting rotator cuff healing after arthroscopic repair: osteoporosis as one of the independent risk factors. Am J Sports Med. 2011;39(10):2099–107. https://doi.org/10.1177/0363546511415659.
Wang J, Sun K, Cheng T, Jiang B, Deng C, Zhao Y, et al. Deep high-resolution representation learning for visual recognition. IEEE Trans Pattern Anal Mach Intell. 2020;43(10):3349–64.
Shorten, C., Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J Big Data 6, 60 (2019). https://doi.org/10.1186/s40537-019-0197-0
Koo TK, Li MY. A Guideline of selecting and reporting Intraclass correlation coefficients for Reliability Research. J Chiropr Med. 2016;15(2):155–63. https://doi.org/10.1016/j.jcm.2016.02.012.
Bland JM, Altman DG. Measurement error and correlation coefficients. BMJ. 1996;313(7048):41–2. https://doi.org/10.1136/bmj.313.7048.41.
Cao Z, Simon T, Wei S-E, Sheikh Y. Realtime multi-person 2d pose estimation using part affinity fields. Proceedings of the IEEE conference on computer vision and pattern recognition2017. pp. 7291-9.
Aurand AM, Dufour JS, Marras WS. Accuracy map of an optical motion capture system with 42 or 21 cameras in a large measurement volume. J Biomech. 2017;58:237–40. https://doi.org/10.1016/j.jbiomech.2017.05.006.
Bazarevsky V, Grishchenko I, Raveendran K, Zhu T, Zhang F. Grundmann MJapa. Blazepose: On-device real-time body pose tracking; 2020.
Li W, Wang Q, Liu X, Yu Y. Simple action for depression detection: using Kinect-recorded human kinematic skeletal data. BMC Psychiatry. 2021;21(1):205.
Plancher KD, Lipnick SL. Analysis of evidence-based medicine for shoulder instability. Arthroscopy. 2009;25(8):897–908. https://doi.org/10.1016/j.arthro.2009.03.017.
Ryu SM, Shin K, Shin SW, Lee SH, Seo SM, Cheon SU, et al. Automated landmark identification for diagnosis of the deformity using a cascade convolutional neural network (FlatNet) on weight-bearing lateral radiographs of the foot. Comput Biol Med. 2022;148:105914. https://doi.org/10.1016/j.compbiomed.2022.105914.
Ryu SM, Shin K, Shin SW, Lee SH, Seo SM, Cheon SU, et al. Automated diagnosis of flatfoot using cascaded convolutional neural network for angle measurements in weight-bearing lateral radiographs. Eur Radiol. 2023;33(7):4822–32. https://doi.org/10.1007/s00330-023-09442-1.
Seok HG, Park SG. Radiologic and clinical outcomes of an arthroscopic bridging graft for irreparable rotator cuff tears with a modified MasonAllen stitch using a plantaris tendon autograft: a case series with minimum 2-year outcomes. Clin Shoulder Elb. 2023;26(4):406–15. https://doi.org/10.5397/cise.2022.01445.
Williamson TR, Robinson PG, Murray IR, Murray AD, McBirnie JM, Robinson CM, et al. Golf participation after rotator cuff repair: functional outcomes, rate of return and factors associated with return to play. Clin Shoulder Elb. 2023;26(2):109–16. https://doi.org/10.5397/cise.2022.01361.
Karasuyama M, Gotoh M, Oike T, Nishie K, Shibuya M, Nakamura H, et al. Does physiotherapy after rotator cuff repair require supervision by a physical therapist? A meta-analysis. Clin Shoulder Elb. 2023;26(3):296–301. https://doi.org/10.5397/cise.2022.01410.
留言 (0)