One immune cell to bind them all: platelet contribution to neurodegenerative disease

Zissimopoulos JM, et al. The impact of changes in Population Health and Mortality on Future Prevalence of Alzheimer’s Disease and other dementias in the United States. J Gerontol B Psychol Sci Soc Sci. 2018;73(suppl1):S38–47.

Article  PubMed  PubMed Central  Google Scholar 

van der Flier WM, et al. Towards a future where Alzheimer’s disease pathology is stopped before the onset of dementia. Nat Aging. 2023;3(5):494–505.

Article  PubMed  Google Scholar 

Iadecola C. The neurovascular unit coming of age: a journey through neurovascular coupling in Health and Disease. Neuron. 2017;96(1):17–42.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Walker KA, Ficek BN, Westbrook R. Understanding the role of systemic inflammation in Alzheimer’s Disease. ACS Chem Neurosci. 2019;10(8):3340–2.

Article  CAS  PubMed  Google Scholar 

Holmes C, et al. Systemic inflammation and disease progression in Alzheimer disease. Neurology. 2009;73(10):768–74.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Heneka MT, et al. Neuroinflammatory processes in Alzheimer’s disease. J Neural Transm (Vienna). 2010;117(8):919–47.

Article  CAS  PubMed  Google Scholar 

Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol. 2021;17(3):157–72.

Article  PubMed  Google Scholar 

Sobue A, Komine O, Yamanaka K. Neuroinflammation in Alzheimer’s disease: microglial signature and their relevance to disease. Inflamm Regen. 2023;43(1):26.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Labzin LI, Heneka MT, Latz E. Innate immunity and neurodegeneration. Annu Rev Med. 2018;69(1):437–49.

Article  CAS  PubMed  Google Scholar 

Walker KA et al. The role of peripheral inflammatory insults in Alzheimer’s disease: a review and research roadmap. Mol Neurodegeneration, 2023. 18(1).

Ludwig N et al. Platelets at the Crossroads of Pro-Inflammatory and Resolution Pathways during Inflammation. Cells, 2022. 11(12): p. 1957.

Patel SR, Hartwig JH, Italiano JE Jr. The biogenesis of platelets from megakaryocyte proplatelets. J Clin Invest. 2005;115(12):3348–54.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cruz Hernandez JC, et al. Neutrophil adhesion in brain capillaries reduces cortical blood flow and impairs memory function in Alzheimer’s disease mouse models. Nat Neurosci. 2019;22(3):413–20.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chakraborty S, et al. A brief overview of neutrophils in Neurological diseases. Biomolecules. 2023;13(5):743.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stellos K, et al. Predictive value of platelet activation for the rate of cognitive decline in Alzheimer’s disease patients. J Cereb Blood Flow Metab. 2010;30(11):1817–20.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sevush S, et al. Platelet activation in Alzheimer disease. Arch Neurol. 1998;55(4):530–6.

Article  CAS  PubMed  Google Scholar 

Yubolphan R, et al. Potential links between platelets and amyloid-β in the pathogenesis of Alzheimer’s disease: evidence from in vitro, in vivo, and clinical studies. Exp Neurol. 2024;374:114683.

Article  CAS  PubMed  Google Scholar 

Merighi S, et al. Upregulation of cortical A2A Adenosine receptors is reflected in platelets of patients with Alzheimer’s Disease. J Alzheimers Dis. 2021;80(3):1105–17.

Article  CAS  PubMed  Google Scholar 

Fu J, et al. Meta-analysis and systematic review of peripheral platelet-associated biomarkers to explore the pathophysiology of alzheimer’s disease. BMC Neurol. 2023;23(1):66.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Repovecki S, et al. Reduced platelet MAO-B activity is Associated with psychotic, positive, and depressive symptoms in PTSD. Biomolecules. 2022;12(5):736.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nam M-H, et al. Revisiting the role of Astrocytic MAOB in Parkinson’s Disease. Int J Mol Sci. 2022;23(8):4453.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hsia H-E, et al. Functions of ‘A disintegrin and metalloproteases (ADAMs)’ in the mammalian nervous system. Cell Mol Life Sci. 2019;76(16):3055–81.

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Sousa DMB, et al. The platelet transcriptome and proteome in Alzheimer’s disease and aging: an exploratory cross-sectional study. Front Mol Biosci. 2023;10:1196083.

Article  PubMed  PubMed Central  Google Scholar 

Levi M, van der Poll T. Two-way interactions between inflammation and coagulation. Trends Cardiovasc Med. 2005;15(7):254–9.

Article  CAS  PubMed  Google Scholar 

Palta S, Saroa R, Palta A. Overview of the coagulation system. Indian J Anaesth. 2014;58(5):515–23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo L, Rondina MT. The era of Thromboinflammation: platelets are dynamic sensors and Effector cells during Infectious diseases. Front Immunol. 2019;10:2204.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stoll G, Nieswandt B. Thrombo-inflammation in acute ischaemic stroke - implications for treatment. Nat Rev Neurol. 2019;15(8):473–81.

Article  CAS  PubMed  Google Scholar 

Bonaventura A, et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat Rev Immunol. 2021;21(5):319–29.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davalos D, Akassoglou K. Fibrinogen as a key regulator of inflammation in disease. Semin Immunopathol. 2012;34(1):43–62.

Article  CAS  PubMed  Google Scholar 

Jennewein C, et al. Novel aspects of fibrin(ogen) fragments during inflammation. Mol Med. 2011;17(5–6):568–73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Witkowski M, et al. Mapping entrained brain oscillations during transcranial alternating current stimulation (tACS). NeuroImage. 2016;140:89–98.

Article  PubMed  Google Scholar 

Shavit Stein E, et al. Thrombin inhibition reduces the expression of brain inflammation markers upon systemic LPS treatment. Neural Plast. 2018;2018:p7692182.

留言 (0)

沒有登入
gif