Detrended fluctuation analysis to determine physiologic thresholds, investigation and evidence from incremental cycling test

Aunola S, Rusko H (1984) Reproducibility of aerobic and anaerobic thresholds in 20?50 year old men. Eur J Appl Physiol 53:260–266. https://doi.org/10.1007/BF00776600

Article  CAS  Google Scholar 

Bassett DR (2000) Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc 32:70–84. https://doi.org/10.1097/00005768-200001000-00012

Article  PubMed  Google Scholar 

Beaver WL, Wasserman K (1985) Whipp BJ (1986) A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol Bethesda Md 60:2020–2027

Google Scholar 

Bentley DJ, Newell J, Bishop D (2007) Incremental exercise test design and analysis: implications for performance diagnostics in endurance athletes. Sports Med 37:575–586. https://doi.org/10.2165/00007256-200737070-00002

Article  PubMed  Google Scholar 

Berntson GG, Stowell JR (1998) ECG artifacts and heart period variability: don’t miss a beat! Psychophysiology 35:127–132. https://doi.org/10.1111/1469-8986.3510127

Article  CAS  PubMed  Google Scholar 

Blain G, Meste O, Bouchard T, Bermon S (2005) Assessment of ventilatory thresholds during graded and maximal exercise test using time varying analysis of respiratory sinus arrhythmia. Br J Sports Med. https://doi.org/10.1136/bjsm.2004.014134

Article  PubMed  PubMed Central  Google Scholar 

Bland JM, Altman D (1986) Statistical methods for assessing agreement between two methods of clinical measurement. The Lancet 327:307–310

Article  Google Scholar 

Boone J, Bourgois J (2012) The oxygen uptake response to incremental ramp exercise: methodogical and physiological issues. Sports Med 42:511–526. https://doi.org/10.2165/11599690-000000000-00000

Article  PubMed  Google Scholar 

Bouillod A, Cassirame J, Bousson JM et al (2015) Acurácia do sistema Suunto para a análise da variabilidade da frequência cardíaca durante um teste de inclinação. Rev Bras Cineantropometria E Desempenho Hum 17:409. https://doi.org/10.5007/1980-0037.2015v17n4p409

Article  Google Scholar 

Bourdillon N, Yazdani S, Vesin J-M et al (2022) RMSSD is more sensitive to artifacts than frequency-domain parameters: implication in athletes’ monitoring. J Sports Sci Med. https://doi.org/10.52082/jssm.2022.260

Article  PubMed  PubMed Central  Google Scholar 

Buchheit M, Solano R, Millet GP (2007) Heart-rate deflection point and the second heart-rate variability threshold during running exercise in trained boys. Pediatr Exerc Sci 19:192–204

Article  PubMed  Google Scholar 

Cassirame J, Stuckey MI, Sheppard F, Tordi N (2013) Accuracy of the Minicardio system for heart rate variability analysis compared to ECG. J Sports Med Phys Fitness 53:248–254

CAS  PubMed  Google Scholar 

Cassirame J, Vanhaesebrouck R, Chevrolat S, Mourot L (2017) Accuracy of the Garmin 920 XT HRM to perform HRV analysis. Australas Phys Eng Sci Med. https://doi.org/10.1007/s13246-017-0593-8

Article  PubMed  Google Scholar 

Cassirame J, Chevrolat S, Mourot L (2019) Effects of R-R time series accuracy on heart rate variability indexes. Mov Sport Sci - Sci Mot. https://doi.org/10.1051/sm/2019006

Article  Google Scholar 

Cottin F, Medigue C, Lepretre P-M et al (2004) Heart rate variability during exercise performed below and above ventilatory threshold. Med Sci Sports Exerc 36:594–600

Article  PubMed  Google Scholar 

Cottin F, Leprêtre P-M, Lopes P et al (2006) Assessment of ventilatory thresholds from heart rate variability in well-trained subjects during cycling. Int J Sports Med 27:959–967. https://doi.org/10.1055/s-2006-923849

Article  CAS  PubMed  Google Scholar 

Cottin F, Médigue C, Lopes P et al (2007) Ventilatory thresholds assessment from heart rate variability during an incremental exhaustive running test. Int J Sports Med 28:287–294. https://doi.org/10.1055/s-2006-924355

Article  CAS  PubMed  Google Scholar 

Cottin F, Le Moing P, Filliau C et al (2010) Relationship between ventilatory thresholds and systolic blood pressure variability. Int J Sports Med 31:604–609. https://doi.org/10.1055/s-0030-1255064

Article  CAS  PubMed  Google Scholar 

Coutts AJ (2014) In the age of technology, Occam’s razor still applies. Int J Sports Physiol Perform 9:741. https://doi.org/10.1123/IJSPP.2014-0353

Article  PubMed  Google Scholar 

Di Michele R, Gatta G, Di Leo A et al (2012) Estimation of the anaerobic threshold from heart rate variability in an incremental swimming test. J Strength Cond Res 26:3059–3066. https://doi.org/10.1519/JSC.0b013e318245bde1

Article  PubMed  Google Scholar 

Giles DA, Draper N (2018) Heart rate variability during exercise: a comparison of artefact correction methods. J Strength Cond Res 32:726–735. https://doi.org/10.1519/JSC.0000000000001800

Article  PubMed  Google Scholar 

Gronwald T, Ludyga S, Hoos O, Hottenrott K (2018) Non-linear dynamics of cardiac autonomic activity during cycling exercise with varied cadence. Hum Mov Sci 60:225–233. https://doi.org/10.1016/j.humov.2018.06.013

Article  PubMed  Google Scholar 

Gronwald T, Rogers B, Hoos O (2020) Fractal correlation properties of heart rate variability: a new biomarker for intensity distribution in endurance exercise and training prescription? Front Physiol 11:550572. https://doi.org/10.3389/fphys.2020.550572

Article  PubMed  PubMed Central  Google Scholar 

Haghayegh S, Kang H-A, Khoshnevis S et al (2020) A comprehensive guideline for Bland-Altman and intra class correlation calculations to properly compare two methods of measurement and interpret findings. Physiol Meas 41:055012. https://doi.org/10.1088/1361-6579/ab86d6

Article  PubMed  Google Scholar 

Hargens TA, Chambers S, Luden ND, Womack CJ (2022) Reliability of the heart rate variability threshold during treadmill exercise. Clin Physiol Funct Imaging 42:292–299. https://doi.org/10.1111/cpf.12760

Article  PubMed  PubMed Central  Google Scholar 

Huikuri HV, Mäkikallio T, Airaksinen KEJ et al (1999) Measurement of heart rate variability: a clinical tool or a research toy? J Am Coll Cardiol 34:1878–1883. https://doi.org/10.1016/S0735-1097(99)00468-4

Article  CAS  PubMed  Google Scholar 

Jamnick NA, Pettitt RW, Granata C et al (2020) An examination and critique of current methods to determine exercise intensity. Sports Med 50:1729–1756. https://doi.org/10.1007/s40279-020-01322-8

Article  PubMed  Google Scholar 

Karapetian GK, Engels HJ, Gretebeck RJ (2008) Use of heart rate variability to estimate LT and VT. Int J Sports Med 29:652–657. https://doi.org/10.1055/s-2007-989423

Article  CAS  PubMed  Google Scholar 

Kaufmann S, Gronwald T, Herold F, Hoos O (2023) Heart rate variability-derived thresholds for exercise intensity prescription in endurance sports: a systematic review of interrelations and agreement with different ventilatory and blood lactate thresholds. Sports Med - Open 9:59. https://doi.org/10.1186/s40798-023-00607-2

Article  PubMed  PubMed Central  Google Scholar 

Keir DA, Iannetta D, Mattioni Maturana F et al (2022) Identification of non-invasive exercise thresholds: methods, strategies, and an online app. Sports Med 52:237–255. https://doi.org/10.1007/s40279-021-01581-z

Article  PubMed  Google Scholar 

Koo TK, Li MY (2016) A Guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15:155–163. https://doi.org/10.1016/j.jcm.2016.02.012

Article  PubMed  PubMed Central  Google Scholar 

Kuipers H, Rietjens G, Verstappen F et al (2003) Effects of stage duration in incremental running tests on physiological variables. Int J Sports Med 24:486–491. https://doi.org/10.1055/s-2003-42020

Article  CAS 

留言 (0)

沒有登入
gif