Biomarker discovery in progressive supranuclear palsy from human cerebrospinal fluid

Boxer AL, Yu JT, Golbe LI, Litvan I, Lang AE, Hoglinger GU. Advances in progressive supranuclear palsy: new diagnostic criteria, biomarkers, and therapeutic approaches. Lancet Neurol. 2017;16(7):552–63.

Article  PubMed  PubMed Central  Google Scholar 

Wagshal D, Sankaranarayanan S, Guss V, Hall T, Berisha F, Lobach I, et al. Divergent CSF tau alterations in two common tauopathies: Alzheimer’s disease and progressive supranuclear palsy. J Neurol Neurosurg Psychiatry. 2015;86(3):244–50.

Article  PubMed  Google Scholar 

Scherling CS, Hall T, Berisha F, Klepac K, Karydas A, Coppola G, et al. Cerebrospinal fluid neurofilament concentration reflects disease severity in frontotemporal degeneration. Ann Neurol. 2014;75(1):116–26.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Magdalinou NK, Paterson RW, Schott JM, Fox NC, Mummery C, Blennow K, et al. A panel of nine cerebrospinal fluid biomarkers may identify patients with atypical parkinsonian syndromes. J Neurol Neurosurg Psychiatry. 2015;86(11):1240–7.

Article  CAS  PubMed  Google Scholar 

Rojas JC, Karydas A, Bang J, Tsai RM, Blennow K, Liman V, et al. Plasma neurofilament light chain predicts progression in progressive supranuclear palsy. Ann Clin Transl Neurol. 2016;3(3):216–25.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoglinger GU, Respondek G, Stamelou M, Kurz C, Josephs KA, Lang AE, et al. Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria. Mov Disord. 2017;32(6):853–64.

Article  PubMed  PubMed Central  Google Scholar 

Brendel M, Barthel H, van Eimeren T, Marek K, Beyer L, Song M, et al. Assessment of 18F-PI-2620 as a Biomarker in Progressive Supranuclear Palsy. JAMA Neurol. 2020;77(11):1408–19.

Article  PubMed  Google Scholar 

van Eimeren T, Antonini A, Berg D, Bohnen N, Ceravolo R, Drzezga A, et al. Neuroimaging biomarkers for clinical trials in atypical parkinsonian disorders: proposal for a neuroimaging Biomarker Utility System. Alzheimers Dement (Amst). 2019;11:301–9.

Article  PubMed  Google Scholar 

Armstrong MJ. Progressive Supranuclear Palsy: an update. Curr Neurol Neurosci Rep. 2018;18(3):12.

Article  PubMed  Google Scholar 

Parthimos TP, Schulpis KH. The Progressive Supranuclear Palsy: past and present aspects. Clin Gerontol. 2020;43(2):155–80.

Article  PubMed  Google Scholar 

Litvan I. Update on progressive supranuclear palsy. Curr Neurol Neurosci Rep. 2004;4(4):296–302.

Article  PubMed  Google Scholar 

Borroni B, Malinverno M, Gardoni F, Alberici A, Parnetti L, Premi E, et al. Tau forms in CSF as a reliable biomarker for progressive supranuclear palsy. Neurology. 2008;71(22):1796–803.

Article  CAS  PubMed  Google Scholar 

Hansson O, Janelidze S, Hall S, Magdalinou N, Lees AJ, Andreasson U, et al. Blood-based NfL: a biomarker for differential diagnosis of parkinsonian disorder. Neurology. 2017;88(10):930–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Olsson B, Portelius E, Cullen NC, Sandelius A, Zetterberg H, Andreasson U, et al. Association of Cerebrospinal Fluid Neurofilament Light Protein levels with cognition in patients with dementia, Motor Neuron Disease, and Movement disorders. JAMA Neurol. 2019;76(3):318–25.

Article  PubMed  Google Scholar 

Rosenthal LS, Drake D, Alcalay RN, Babcock D, Bowman FD, Chen-Plotkin A, et al. The NINDS Parkinson’s disease biomarkers program. Mov Disord. 2016;31(6):915–23.

Article  CAS  PubMed  Google Scholar 

Jang Y, Pletnikova O, Troncoso JC, Pantelyat AY, Dawson TM, Rosenthal LS, et al. Mass Spectrometry-based proteomics Analysis of Human Substantia Nigra from Parkinson’s Disease patients identifies multiple pathways potentially involved in the Disease. Mol Cell Proteom. 2023;22(1):100452.

Article  CAS  Google Scholar 

Jang Y, Thuraisamy T, Redding-Ochoa J, Pletnikova O, Troncoso JC, Rosenthal LS, et al. Mass spectrometry-based proteomics analysis of human globus pallidus from progressive supranuclear palsy patients discovers multiple disease pathways. Clin Transl Med. 2022;12(11):e1076.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57.

Article  PubMed  Google Scholar 

von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res. 2003;31(1):258–61.

Article  Google Scholar 

Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–13.

Article  CAS  PubMed  Google Scholar 

Johnson ECB, Carter EK, Dammer EB, Duong DM, Gerasimov ES, Liu Y, et al. Large-scale deep multi-layer analysis of Alzheimer’s disease brain reveals strong proteomic disease-related changes not observed at the RNA level. Nat Neurosci. 2022;25(2):213–25.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oh S, Jang Y, Na CH. Discovery of biomarkers for amyotrophic lateral sclerosis from human cerebrospinal fluid using Mass-Spectrometry-based proteomics. Biomedicines. 2023;11(5).

Xia J, Broadhurst DI, Wilson M, Wishart DS. Translational biomarker discovery in clinical metabolomics: an introductory tutorial. Metabolomics. 2013;9(2):280–99.

Article  CAS  PubMed  Google Scholar 

Abrantes G, Almeida V, Maia AJ, Nascimento R, Nascimento C, Silva Y, et al. Comparison between variable-selection algorithms in PLS regression with Near-Infrared Spectroscopy to predict selected metals in Soil. Molecules. 2023;28:19.

Article  Google Scholar 

Song J, Ma S, Sokoll LJ, Eguez RV, Hoti N, Zhang H, et al. A panel of selected serum protein biomarkers for the detection of aggressive prostate cancer. Theranostics. 2021;11(13):6214–24.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Soldan A, Oh S, Ryu T, Pettigrew C, Zhu Y, Moghekar A et al. NPTX2 in Cerebrospinal Fluid Predicts the Progression From Normal Cognition to Mild Cognitive Impairment. Ann Neurol. 2023.

Sathe G, Albert M, Darrow J, Saito A, Troncoso J, Pandey A, et al. Quantitative proteomic analysis of the frontal cortex in Alzheimer’s disease. J Neurochem. 2021;156(6):988–1002.

Article  CAS  PubMed  Google Scholar 

Soldan A, Moghekar A, Walker KA, Pettigrew C, Hou X, Lu H, et al. Resting-state functional connectivity is Associated with cerebrospinal fluid levels of the synaptic protein NPTX2 in non-demented older adults. Front Aging Neurosci. 2019;11:132.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roemer SF, Grinberg LT, Crary JF, Seeley WW, McKee AC, Kovacs GG, et al. Rainwater Charitable Foundation criteria for the neuropathologic diagnosis of progressive supranuclear palsy. Acta Neuropathol. 2022;144(4):603–14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hauw JJ, Daniel SE, Dickson D, Horoupian DS, Jellinger K, Lantos PL, et al. Preliminary NINDS neuropathologic criteria for Steele-Richardson-Olszewski syndrome (progressive supranuclear palsy). Neurology. 1994;44(11):2015–9.

Article  CAS  PubMed  Google Scholar 

Wennstrom M, Nielsen HM. Cell adhesion molecules in Alzheimer’s disease. Degener Neurol Neuromuscul Dis. 2012;2:65–77.

PubMed  PubMed Central 

留言 (0)

沒有登入
gif