Lateralization of acquisition and consolidation in direction but not amplitude of a motor skill task

Adams JA (1987) Historical review and appraisal of research on the learning, retention, and transfer of human motor skills. Psychol Bull 101(1):41–74. https://doi.org/10.1037/0033-2909.101.1.41

Article  Google Scholar 

Albert NB, Robertson EM, Miall RC (2009) The resting human brain and motor learning. Curr Biology: CB 19(12):1023–1027. https://doi.org/10.1016/j.cub.2009.04.028

Article  CAS  Google Scholar 

Albert ST, Jang J, Modchalingam S, ‘t Hart BM, Henriques D, Lerner G, Della-Maggiore V, Haith AM, Krakauer JW, Shadmehr R (2022) Competition between parallel sensorimotor learning systems. eLife 11:e65361. https://doi.org/10.7554/eLife.65361

Article  CAS  PubMed  PubMed Central  Google Scholar 

Avraham G, Morehead JR, Kim HE, Ivry RB (2021) Reexposure to a sensorimotor perturbation produces opposite effects on explicit and implicit learning processes. PLoS Biol 19(3):e3001147. https://doi.org/10.1371/journal.pbio.3001147

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bagesteiro LB, Sainburg RL (2002) Handedness: dominant arm advantages in control of limb dynamics. J Neurophysiol 88(5):2408–2421. https://doi.org/10.1152/jn.00901.2001

Article  PubMed  Google Scholar 

Bock O (1992) Adaptation of aimed arm movements to sensorimotor discordance: evidence for direction-independent gain control. Behav Brain Res 51(1):41–50. https://doi.org/10.1016/s0166-4328(05)80310-9

Article  CAS  PubMed  Google Scholar 

Bock O, Arnold K (1992) Motor control prior to movement onset: preparatory mechanisms for pointing at visual targets. Exp Brain Res 90(1):209–216. https://doi.org/10.1007/BF00229273

Article  CAS  PubMed  Google Scholar 

Borod JC, Caron HS, Koff E (1984) Left-handers and right-handers compared on performance and preference measures of lateral dominance. Br J Psychol 75(Pt 2):177–186

Article  PubMed  Google Scholar 

Chase C, Seidler R (2008) Degree of handedness affects intermanual transfer of skill learning. Exp Brain Res 190(3):317–328. https://doi.org/10.1007/s00221-008-1472-z

Article  PubMed  PubMed Central  Google Scholar 

Coltman SK, Cashaback JGA, Gribble PL (2019) Both fast and slow learning processes contribute to savings following sensorimotor adaptation. J Neurophysiol 121(4):1575–1583. https://doi.org/10.1152/jn.00794.2018

Article  PubMed  PubMed Central  Google Scholar 

Dassonville P, Zhu XH, Uurbil K, Kim SG, Ashe J (1997) Functional activation in motor cortex reflects the direction and the degree of handedness. Proc Natl Acad Sci USA 94(25):14015–14018. https://doi.org/10.1073/pnas.94.25.14015

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dayan E, Cohen LG (2011) Neuroplasticity subserving motor skill learning. Neuron 72(3):443–454. https://doi.org/10.1016/j.neuron.2011.10.008

Article  CAS  PubMed  PubMed Central  Google Scholar 

Desmurget M, Grafton ST, Vindras P, Gre’a H, Turner RS (2004) The basal ganglia network mediates the planning of movement amplitude. Eur J Neu- rosci 19:2871–2880

Article  CAS  Google Scholar 

Dingwell JB, Smallwood RF, Cusumano JP (2013) Trial-to-trial dynamics and learning in a generalized, redundant reaching task. J Neurophysiol. 109(1):225 – 37. https://doi.org/10.1152/jn.00951.2011. Epub 2012 Oct 10. PMID: 23054607; PMCID: PMC3545167

Duff SV, Sainburg RL (2007) Lateralization of motor adaptation reveals independence in control of trajectory and steady-state position. Exp Brain Res 179(4):551–561. https://doi.org/10.1007/s00221-006-0811-1

Article  PubMed  Google Scholar 

Ghez C, Favilla M, Ghilardi MF, Gordon J, Bermejo J, Pullman S (1997) Discrete and continuous planning of hand movements and isometric force trajectories. Exp Brain Res 115:217–233

Article  CAS  PubMed  Google Scholar 

Gordon J, Ghilardi MF, Ghez C (1994) Accuracy of planar reaching movements. 1. Independence of direction and extent variability. Exp Brain Res 99:97–111

Article  CAS  PubMed  Google Scholar 

Haith AM, Huberdeau DM, Krakauer JW (2015) The influence of movement preparation time on the expression of visuomotor learning and savings. J Neuroscience: Official J Soc Neurosci 35(13):5109–5117. https://doi.org/10.1523/JNEUROSCI.3869-14.2015

Article  CAS  Google Scholar 

Hardwick RM, Rottschy C, Miall RC, Eickhoff SB (2013) A quantitative meta-analysis and review of motor learning in the human brain. NeuroImage 67:283–297. https://doi.org/10.1016/j.neuroimage.2012.11.020

Article  PubMed  Google Scholar 

Huang VS, Haith A, Mazzoni P, Krakauer JW (2011) Rethinking Motor Learning and Savings in Adaptation paradigms: Model-Free memory for successful actions combines with Internal models. Neuron 70(4):787–801. https://doi.org/10.1016/j.neuron.2011.04.012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huberdeau DM, Haith AM, Krakauer JW (2015) Formation of a long-term memory for visuomotor adaptation following only a few trials of practice. J Neurophysiol 114(2):969–977. https://doi.org/10.1152/jn.00369.2015

Article  CAS  PubMed  PubMed Central  Google Scholar 

James R, Bao S, D’Amato A, Wang J (2022) The nature of savings associated with a visuomotor adaptation task that involves one arm or both arms. Hum Mov Sci 81:102896. https://doi.org/10.1016/j.humov.2021.102896

Article  PubMed  Google Scholar 

Jayasinghe SAL, Scheidt RA, Sainburg RL (2022) Neural control of stopping and stabilizing the arm. Front Integr Neurosci. 16:835852. https://doi.org/10.3389/fnint.2022.835852. PMID: 35264934; PMCID: PMC8899537

Article  PubMed  PubMed Central  Google Scholar 

Kitago T, Ryan SL, Mazzoni P, Krakauer JW, Haith AM (2013) Unlearning versus savings in visuomotor adaptation: comparing effects of washout, passage of time, and removal of errors on motor memory. Front Hum Neurosci 7:307. https://doi.org/10.3389/fnhum.2013.00307

Article  PubMed  PubMed Central  Google Scholar 

Kitchen NM, Dexheimer B, Yuk J, Maenza C, Ruelos PR, Kim T, Sainburg RL (2024) The complementary dominance hypothesis: a model for remediating the ‘good’ hand in stroke survivors. J Physiol. https://doi.org/10.1113/JP285561

Krakauer JW (2009) Motor Learning and Consolidation: The Case of Visuomotor Rotation. In D. Sternad (Ed.), Progress in Motor Control (Vol. 629, pp. 405–421). Springer US. https://doi.org/10.1007/978-0-387-77064-2_21

Krakauer JW, Pine ZM, Ghilardi MF, Ghez C (2000) Learning of visuomotor transformations for vectorial planning and reaching trajectories. J Neurosci 20:8916–8924

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krakauer JW, Ghilardi MF, Mentis M, Barnes A, Veytsman M, Eidelberg D, Ghez C (2004) Differential cortical and subcortical activations in learning rotations and gains for reaching: a PET study. J Neuro- physiol 91:924–933

Google Scholar 

Krakauer JW, Hadjiosif AM, Xu J, Wong AL, Haith AM (2019) Motor learning. Compr Physiol. https://doi.org/10.1002/cphy.c170043

Article  PubMed  Google Scholar 

Kumar A, Panthi G, Divakar R, Mutha PK (2020) Mechanistic determinants of effector-independent motor memory encoding. Proc Natl Acad Sci USA 117(29):17338–17347. https://doi.org/10.1073/pnas.2001179117

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lackner JR, Dizio P (1994) Rapid adaptation to Coriolis force perturbations of arm trajectory. J Neurophysiol 72(1):299–313. https://doi.org/10.1152/jn.1994.72.1.299

Article  CAS  PubMed  Google Scholar 

Lee SH, Jin SH, An J (2019) The difference in cortical activation pattern for complex motor skills: a functional near- infrared spectroscopy study. Sci Rep 9(1):14066. https://doi.org/10.1038/s41598-019-50644-9

Article 

留言 (0)

沒有登入
gif