Zebrafish Models for Skeletal and Extraskeletal Osteogenesis Imperfecta Features: Unveiling Pathophysiology and Paving the Way for Drug Discovery

Marini JC et al (2017) Osteogenesis imperfecta. Nat Rev Dis Primers 3:17052. https://doi.org/10.1038/nrdp.2017.52. ((in eng))

Article  PubMed  Google Scholar 

Forlino A, Marini JC (2016) Osteogenesis imperfecta. Lancet 387(10028):1657–1671. https://doi.org/10.1016/S0140-6736(15)00728-X. ((in eng))

Article  CAS  PubMed  Google Scholar 

Garibaldi N et al (2022) Dissecting the phenotypic variability of osteogenesis imperfecta. Dis Model Mech. https://doi.org/10.1242/dmm.049398. ((in eng))

Article  PubMed  PubMed Central  Google Scholar 

Rossi V, Lee B, Marom R (2019) Osteogenesis imperfecta: advancements in genetics and treatment. Curr Opin Pediatr 31(6):708–715. https://doi.org/10.1097/MOP.0000000000000813. ((in eng))

Article  CAS  PubMed  PubMed Central  Google Scholar 

Besio R, Chow CW, Tonelli F, Marini JC, Forlino A (2019) Bone biology: insights from osteogenesis imperfecta and related rare fragility syndromes. FEBS J 286(15):3033–3056. https://doi.org/10.1111/febs.14963. ((in eng))

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cohn LA, Meuten DJ (1990) Bone fragility in a kitten: an osteogenesis imperfecta-like syndrome. J Am Vet Med Assoc 197(1):98–100 ((in eng))

Article  CAS  PubMed  Google Scholar 

Evason MD, Taylor SM, Bebchuk TN (2007) Suspect osteogenesis imperfecta in a male kitten. Can Vet J 48(3):296–298 ((in eng))

PubMed  PubMed Central  Google Scholar 

Arthur DG, Thompson KG, Swarbrick P (1992) Lethal osteogenesis imperfecta and skin fragility in newborn New Zealand Romney lambs. N Z Vet J 40(3):112–116. https://doi.org/10.1080/00480169.1992.35712. ((in eng))

Article  CAS  PubMed  Google Scholar 

Omar AR (1961) Osteogenesis imperfecta in cats. J Pathol Bacteriol 82:303–314. https://doi.org/10.1002/path.1700820209. ((in eng))

Article  CAS  PubMed  Google Scholar 

Jensen PT, Rasmussen PG, Basse A (1976) Congenital osteogenesis imperfecta in Charollais cattle. Nord Vet Med 28(6):304–308 ((in eng))

CAS  PubMed  Google Scholar 

J. Lenffer et al., "OMIA (Online Mendelian Inheritance in Animals): an enhanced platform and integration into the Entrez search interface at NCBI, Nucleic Acids Res, vol. 34, no. Database issue, pp. D599–601, 2006, https://doi.org/10.1093/nar/gkj152.

Campbell BG, Wootton JA, Macleod JN, Minor RR (2001) Canine COL1A2 mutation resulting in C-terminal truncation of pro-alpha2(I) and severe osteogenesis imperfecta. J Bone Miner Res 16(6):1147–1153. https://doi.org/10.1359/jbmr.2001.16.6.1147. ((in eng))

Article  CAS  PubMed  Google Scholar 

Bourneuf E et al (2017) Rapid discovery of de novo deleterious mutations in cattle enhances the value of livestock as model species. Sci Rep 7(1):11466. https://doi.org/10.1038/s41598-017-11523-3. ((in eng))

Article  CAS  PubMed  PubMed Central  Google Scholar 

Petersen JL, Tietze SM, Burrack RM, Steffen DJ (2019) Evidence for a de novo, dominant germ-line mutation causative of osteogenesis imperfecta in two Red Angus calves. Mamm Genome 30(3–4):81–87. https://doi.org/10.1007/s00335-019-09794-4. ((in eng))

Article  PubMed  Google Scholar 

Elefteriou F, Yang X (2011) Genetic mouse models for bone studies–strengths and limitations. Bone 49(6):1242–1254. https://doi.org/10.1016/j.bone.2011.08.021

Article  CAS  PubMed  PubMed Central  Google Scholar 

F. Tonelli et al., Zebrafish: a resourceful vertebrate model to investigate skeletal disorders, Front Endocrinol (Lausanne), vol. 11, p. 489, 2020, https://doi.org/10.3389/fendo.2020.00489.

Lleras-Forero L, Winkler C, Schulte-Merker S (2020) Zebrafish and medaka as models for biomedical research of bone diseases. Dev Biol 457(2):191–205. https://doi.org/10.1016/j.ydbio.2019.07.009

Article  CAS  PubMed  Google Scholar 

Meyer A, Van de Peer Y (2005) From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). BioEssays 27(9):937–945. https://doi.org/10.1002/bies.20293

Article  CAS  PubMed  Google Scholar 

Gistelinck C et al (2016) Zebrafish Collagen Type I: molecular and biochemical characterization of the major structural protein in bone and skin. Sci Rep 6:21540. https://doi.org/10.1038/srep21540

Article  CAS  PubMed  PubMed Central  Google Scholar 

Apschner A, Schulte-Merker S, Witten PE (2011) Not all bones are created equal - using zebrafish and other teleost species in osteogenesis research. Methods Cell Biol 105:239–255. https://doi.org/10.1016/B978-0-12-381320-6.00010-2. ((in eng))

Article  PubMed  Google Scholar 

Witten PE, Harris MP, Huysseune A, Winkler C (2017) Small teleost fish provide new insights into human skeletal diseases. Methods Cell Biol 138:321–346. https://doi.org/10.1016/bs.mcb.2016.09.001. ((in eng))

Article  CAS  PubMed  Google Scholar 

Witten PE, Huysseune A (2009) A comparative view on mechanisms and functions of skeletal remodelling in teleost fish, with special emphasis on osteoclasts and their function. Biol Rev Camb Philos Soc 84(2):315–346. https://doi.org/10.1111/j.1469-185X.2009.00077.x

Article  PubMed  Google Scholar 

R. Silva Brito, A. Canedo, D. Farias, and T. L. Rocha, "Transgenic zebrafish (Danio rerio) as an emerging model system in ecotoxicology and toxicology: Historical review, recent advances, and trends, Sci Total Environ, vol. 848, p. 157665, 2022, https://doi.org/10.1016/j.scitotenv.2022.157665.

Choe CP et al (2021) Transgenic fluorescent zebrafish lines that have revolutionized biomedical research. Lab Anim Res 37(1):26. https://doi.org/10.1186/s42826-021-00103-2. ((in eng))

Article  PubMed  PubMed Central  Google Scholar 

Marques IJ, Lupi E, Mercader N (2019) Model systems for regeneration: zebrafish. Development. https://doi.org/10.1242/dev.167692. ((in eng))

Article  PubMed  PubMed Central  Google Scholar 

Wang X, He H, Tang W, Zhang XA, Hua X, Yan J (2012) Two origins of blastemal progenitors define blastemal regeneration of zebrafish lower jaw. PLoS ONE 7(9):e45380. https://doi.org/10.1371/journal.pone.0045380. ((in eng))

Article  CAS  PubMed  PubMed Central  Google Scholar 

E. Kague, R. Y. Kwon, and C. Winkler, "Editorial: Fish as model organism for skeletal diseases, Front Endocrinol (Lausanne), vol. 14, p. 1331690, 2023, https://doi.org/10.3389/fendo.2023.1331690.

Tasnim M, Wahlquist P, Hill JT (2024) Zebrafish: unraveling genetic complexity through duplicated genes. Dev Genes Evol. https://doi.org/10.1007/s00427-024-00720-6. ((in eng))

Article  PubMed  Google Scholar 

Fisher S, Jagadeeswaran P, Halpern ME (2003) Radiographic analysis of zebrafish skeletal defects. Dev Biol 264(1):64–76. https://doi.org/10.1016/s0012-1606(03)00399-3. ((in eng))

Article  CAS  PubMed  Google Scholar 

M. T. Valenti, G. Marchetto, M. Mottes, and L. Dalle Carbonare, "Zebrafish: A Suitable Tool for the Study of Cell Signaling in Bone, Cells, 2020, https://doi.org/10.3390/cells9081911.

Zhao Q, Eberspaecher H, Lefebvre V, De Crombrugghe B (1997) Parallel expression of Sox9 and Col2a1 in cells undergoing chondrogenesis. Dev Dyn 209(4):377–386

Article  CAS  PubMed  Google Scholar 

Yan YL et al (2005) A pair of Sox: distinct and overlapping functions of zebrafish sox9 co-orthologs in craniofacial and pectoral fin development. Development 132(5):1069–1083. https://doi.org/10.1242/dev.01674. ((in eng))

Article  CAS  PubMed  Google Scholar 

Maye P et al (2011) Generation and characterization of Col10a1-mcherry reporter mice. Genesis 49(5):410–418. ht

留言 (0)

沒有登入
gif