Clinical Applications and Advancements of Positron Emission Tomography/Computed Tomography in Cardio-Oncology: A Comprehensive Literature Review and Emerging Perspectives

Di Carli MF, Hachamovitch R. New technology for noninvasive evaluation of coronary artery disease. Circulation. Mar 20. 2007;115(11):1464–80. https://doi.org/10.1161/circulationaha.106.629808

Carli MFD, Murthy VL. Cardiac PET/CT for the evaluation of known or suspected coronary artery disease. Radiographics. 2011;31(5):1239–54. https://doi.org/10.1148/rg.315115056.

Article  PubMed  PubMed Central  Google Scholar 

Knaapen P, de Haan S, Hoekstra OS, et al. Cardiac PET-CT: advanced hybrid imaging for the detection of coronary artery disease. Neth Heart J Feb. 2010;18(2):90–8. https://doi.org/10.1007/bf03091744.

Article  CAS  Google Scholar 

Alberts I, Sari H, Mingels C, et al. Long-axial field-of-view PET/CT: perspectives and review of a revolutionary development in nuclear medicine based on clinical experience in over 7000 patients. Cancer Imaging. 2023;23(1). https://doi.org/10.1186/s40644-023-00540-3.

Nakazato R, Berman DS, Alexanderson E, Slomka P. Myocardial perfusion imaging with PET. Imaging Med. Feb 2013;1(1):35–46. https://doi.org/10.2217/iim.13.1.

Article  CAS  Google Scholar 

Schenker MP, Dorbala S, Hong EC et al. Interrelation of coronary calcification, myocardial ischemia, and outcomes in patients with intermediate likelihood of coronary artery disease: a combined positron emission tomography/computed tomography study. Circulation. Apr 1. 2008;117(13):1693–700. https://doi.org/10.1161/circulationaha.107.717512

van Werkhoven JM, Schuijf JD, Gaemperli O, et al. Prognostic value of multislice computed tomography and gated single-photon emission computed tomography in patients with suspected coronary artery disease. J Am Coll Cardiol Feb. 2009;17(7):623–32. https://doi.org/10.1016/j.jacc.2008.10.043.

Article  Google Scholar 

Camici PG, Crea F. Coronary microvascular dysfunction. N Engl J Med Feb. 2007;22(8):830–40. https://doi.org/10.1056/NEJMra061889.

Article  Google Scholar 

Dorbala S, Di Carli MF, Cardiac. PET perfusion: prognosis, risk stratification, and clinical management. Semin Nucl Med. Sep 2014;44(5):344–57. https://doi.org/10.1053/j.semnuclmed.2014.05.003.

Gimelli A, Liga R, Duce V, Kusch A, Clemente A, Marzullo P. Accuracy of myocardial perfusion imaging in detecting multivessel coronary artery disease: a cardiac CZT study. J Nucl Cardiol Apr. 2017;24(2):687–95. https://doi.org/10.1007/s12350-015-0360-8.

Article  Google Scholar 

Kaufmann PA, Di Carli MF. Hybrid SPECT/CT and PET/CT imaging: the next step in noninvasive cardiac imaging. Semin Nucl Med. Sep 2009;39(5):341–7. https://doi.org/10.1053/j.semnuclmed.2009.03.007.

Fahim Ul H, Cook GJ. PET/CT in oncology. Clin Med (Lond) Aug. 2012;12(4):368–72. https://doi.org/10.7861/clinmedicine.12-4-368.

Article  Google Scholar 

Slart RHJA, Glaudemans AWJM, Gheysens O, et al. Procedural recommendations of cardiac PET/CT imaging: standardization in inflammatory-, infective-, infiltrative-, and innervation (4Is)-related cardiovascular diseases: a joint collaboration of the EACVI and the EANM. Eur J Nucl Med Mol Imaging. 2021;48(4):1016–39. https://doi.org/10.1007/s00259-020-05066-5.

Article  PubMed  Google Scholar 

Battisha A, Sawalha K, Obeidat Y, Patel B. Role of cardiac biomarkers in monitoring cardiotoxicity in Chemotherapy patients. Crit Pathw Cardiol. 2023;22(3):83–7. https://doi.org/10.1097/hpc.0000000000000314.

Article  PubMed  Google Scholar 

Kelly JM, Babich JW. PET Tracers for Imaging Cardiac function in Cardio-Oncology. Curr Cardiol Rep Mar. 2022;24(3):247–60. https://doi.org/10.1007/s11886-022-01641-4.

Article  Google Scholar 

Becker MMC, Arruda GFA, Berenguer DRF, Buril RO, Cardinale D, Brandão SCS. Anthracycline cardiotoxicity: current methods of diagnosis and possible role of (18)F-FDG PET/CT as a new biomarker. Cardiooncology Mar. 2023;27(1):17. https://doi.org/10.1186/s40959-023-00161-6.

Article  Google Scholar 

Di Carli MF, Murthy VL. Cardiac PET/CT for the evaluation of known or suspected coronary artery disease. Radiographics Sep-Oct. 2011;31(5):1239–54. https://doi.org/10.1148/rg.315115056.

Article  Google Scholar 

Griffeth LK. Use of PET/CT scanning in cancer patients: technical and practical considerations. Proc (Bayl Univ Med Cent) Oct. 2005;18(4):321–30. https://doi.org/10.1080/08998280.2005.11928089.

Article  Google Scholar 

Saif MW, Tzannou I, Makrilia N, Syrigos K. Role and cost effectiveness of PET/CT in management of patients with cancer. Yale J Biol Med Jun. 2010;83(2):53–65.

Google Scholar 

Taqueti VR, Di Carli MF. Coronary microvascular disease pathogenic mechanisms and therapeutic options: JACC State-of-the-art review. J Am Coll Cardiol Nov. 2018;27(21):2625–41. https://doi.org/10.1016/j.jacc.2018.09.042.

Article  Google Scholar 

Danad I, Raijmakers PG, Driessen RS, et al. Comparison of coronary CT angiography, SPECT, PET, and Hybrid Imaging for diagnosis of ischemic heart Disease determined by fractional Flow Reserve. JAMA Cardiol. 2017;2(10):1100–7. https://doi.org/10.1001/jamacardio.2017.2471.

Article  PubMed  PubMed Central  Google Scholar 

Schindler TH, Fearon WF, Pelletier-Galarneau M, et al. Myocardial perfusion PET for the detection and reporting of coronary microvascular dysfunction: a JACC: Cardiovascular Imaging Expert Panel Statement. JACC Cardiovasc Imaging Apr. 2023;16(4):536–48. https://doi.org/10.1016/j.jcmg.2022.12.015.

Article  Google Scholar 

Ziadi MC. Myocardial flow reserve (MFR) with positron emission tomography (PET)/computed tomography (CT): clinical impact in diagnosis and prognosis. Cardiovasc Diagn Ther Apr. 2017;7(2):206–18. https://doi.org/10.21037/cdt.2017.04.10.

Article  Google Scholar 

Quryshi N, Norwood Toro LE, Ait-Aissa K, Kong A, Beyer AM. Chemotherapeutic-Induced Cardiovascular Dysfunction: physiological effects, early detection-the role of telomerase to counteract mitochondrial defects and oxidative stress. Int J Mol Sci Mar. 2018;10(3). https://doi.org/10.3390/ijms19030797.

Gould KL, Johnson NP, Narula J. Microvascular dysfunction or diffuse epicardial CAD with normal stress vasodilation. JACC Cardiovasc Imaging Apr. 2023;16(4):549–52. https://doi.org/10.1016/j.jcmg.2022.10.029.

Article  Google Scholar 

Rajai N, Ahmad A, Toya T, et al. Coronary microvascular dysfunction is an independent predictor of developing cancer in patients with non-obstructive coronary artery disease. Eur J Prev Cardiol Feb. 2023;14(3):209–16. https://doi.org/10.1093/eurjpc/zwac184.

Article  Google Scholar 

Sara JD, Kaur J, Khodadadi R, et al. 5-fluorouracil and cardiotoxicity: a review. Ther Adv Med Oncol. 2018;10. https://doi.org/10.1177/1758835918780140.

Polk A, Vaage-Nilsen M, Vistisen K, Nielsen DL. Cardiotoxicity in cancer patients treated with 5-fluorouracil or capecitabine: a systematic review of incidence, manifestations and predisposing factors. Cancer Treat Rev Dec. 2013;39(8):974–84. https://doi.org/10.1016/j.ctrv.2013.03.005.

Article  CAS  Google Scholar 

Polk A, Shahmarvand N, Vistisen K, et al. Incidence and risk factors for capecitabine-induced symptomatic cardiotoxicity: a retrospective study of 452 consecutive patients with metastatic breast cancer. BMJ Open Oct. 2016;19(10):e012798. https://doi.org/10.1136/bmjopen-2016-012798.

Article  Google Scholar 

Chong JH, Ghosh AK. May. Coronary Artery Vasospasm Induced by 5-fluorouracil: Proposed Mechanisms, Existing Management Options and Future Directions. Interv Cardiol. 2019;14(2):89–94. https://doi.org/10.15420/icr.2019.12

Moudgil R, Yeh ET. Mechanisms of cardiotoxicity of Cancer Chemotherapeutic agents: Cardiomyopathy and Beyond. Can J Cardiol Jul. 2016;32(7):863–e8705. https://doi.org/10.1016/j.cjca.2016.01.027.

Article  Google Scholar 

Cameron AC, Touyz RM, Lang NN. Vascular complications of Cancer Chemotherapy. Can J Cardiol Jul. 2016;32(7):852–62. https://doi.org/10.1016/j.cjca.2015.12.023.

Article  Google Scholar 

Herrmann J. Vascular toxic effects of cancer therapies. Nature Reviews Cardiology. 2020/08/01 2020;17(8):503–522. https://doi.org/10.1038/s41569-020-0347-2.

Herrmann J. Cardiovascular Toxicity with cisplatin in patients with testicular Cancer: looking for something heavier than Heavy Metal. JACC CardioOncol Sep. 2020;2(3):456–9. https://doi.org/10.1016/j.jaccao.2020.07.007.

Article  Google Scholar 

Chung R, Tyebally S, Chen D, et al. Hypertensive cardiotoxicity in Cancer Treatment-systematic analysis of Adjunct, Conventional Chemotherapy, and Novel Therapies-Epidemiology, incidence, and pathophysiology. J Clin Med Oct. 2020;18(10). https://doi.org/10.3390/jcm9103346.

van Dorst DCH, Dobbin SJH, Neves KB, et al. Hypertension and Prohypertensive Antineoplastic therapies in Cancer patients. Circ Res Apr. 2021;2(7):1040–61. https://doi.org/10.1161/circresaha.121.318051.

Article  Google Scholar 

Kounis NG, Soufras GD, Tsigkas G, Hahalis G. Adverse cardiac events to monoclonal antibodies used for cancer therapy: the risk of Kounis syndrome. Oncoimmunology. 2014;3:e27987. https://doi.org/10.4161/onci.27987.

Article  PubMed  PubMed Central  Google Scholar 

Qi WX, Fu S, Zhang Q, Guo XM. Bevacizumab increases the risk of severe congestive heart failure in cancer patients: an up-to-date meta-analysis with a focus on different subgroups. Clin Drug Investig Oct. 2014;34(10):681–90. https://doi.org/10.1007/s40261-014-0222-1.

Article  CAS  Google Scholar 

Gürdoğan M, Demir M, Yalta K, Gülertop Y. Cancer Therapy-related pulmonary hypertension: a review of mechanisms and implications for clinical practice. Anatol J Cardiol Jun. 2023;27(6):299–307. https://doi.org/10.14744/AnatolJCardiol.2023.3013.

Article  Google Scholar 

Shalata W, Abu-Salman A, Steckbeck R, Mathew Jacob B, Massalha I, Yakobson A. Cardiac Toxicity Associated with Immune Checkpoint inhibitors: a systematic review. Cancers (Basel) Oct. 2021;18(20). https://doi.org/10.3390/cancers13205218.

Ganatra S, Neilan TG. Immune Checkpoint inhibitor-Associated Myocarditis. Oncologist Aug. 2018;23(8):879–86. https://doi.org/10.1634/theoncologist.20180130.

Article  Google Scholar 

Murthy VL, Bateman TM, Beanlands RS, et al. Clinical quantification of myocardial blood Flow using PET: joint position paper of the SNMMI Cardiovascular Council and the ASNC. J Nucl Med Feb. 2018;59(2):273–93. https://doi.org/10.2967/jnumed.117.201368.

Article  CAS  Google Scholar 

Del Buono Marco G, Montone Rocco A, Camilli M et al. Coronary Microvascular Dysfunction Across the Spectrum of Cardiovascular Diseases. Journal of the American College of Cardiology. 2021/09/28 2021;78(13):1352–1371. https://doi.org/10.1016/j.jacc.2021.07.042

Kelshiker MA, Seligman H, Howard JP, et al. Coronary flow reserve and cardiovascular outcomes: a systematic review and meta-analysis. Eur Heart J Apr. 2022;19(16):1582–93. https://doi.org/10.1093/eurheartj/ehab775.

Article 

留言 (0)

沒有登入
gif