Resistance of Bt and Non-Bt Soybean Cultivars Adapted to Novel Growing Regions of Brazil to Chrysodeixis includens and Spodoptera frugiperda

Adamczyk JJ, Gore J (2004) Laboratory and field performance of cotton containing Cry1Ac, Cry1F, and both Cry1Ac and Cry1F (Widestrike) against beet armyworm and fall armyworm larvae (Lepidoptera: Noctuidae). Fla Entomol 87:427–432. https://doi.org/10.1653/0015-4040(2004)087[0427:LAFPOC]2.0.CO;2

Article  CAS  Google Scholar 

Adamczyk JJ, Sumerford DV (2001) Increased tolerance of fall armyworms (Lepidoptera: Noctuidae) to Cry1Ac a-endotoxin when fed transgenic Bacillus thuringiensis cotton: impact on the development of subsequent generations. Fla Entomol 84:1–6. https://doi.org/10.2307/3496656

Article  CAS  Google Scholar 

Barcellos GA, Hanich MR, Pretto VE, Weschenfelder MAG, Horikoshi RJ, Dourado PM, Ovejero RFL, Berger GU, Martinelli S, Head GP (2022) Characterizing the lethal and sub-lethal effects of genetically-modified soybean expressing Cry1A.105, Cry2Ab2, and Cry1Ac insecticidal proteins against Spodoptera species (Lepidoptera: Noctuidae) in Brazil. Pest Manag Sci 79:548–559. https://doi.org/10.1002/ps.7225

Article  CAS  PubMed  Google Scholar 

Bernardi O, Malvestiti GS, Dourado PM, Oliveira WS, Martinelli S, Berger GU, Omoto C (2012) Assessment of the high-dose concept and level of control provided by MON 87701 × MON 89788 soybean against Anticarsia gemmatalis and Pseudoplusia includens (Lepidoptera: Noctuidae) in Brazil. Pest Manag Sci 68:1083–1091. https://doi.org/10.1002/ps.3271

Article  CAS  PubMed  Google Scholar 

Bernardi O, Dourado PM, Carvalho RA, Martinelli S, Berger GU, Head GP, Omoto C (2014a) High levels of biological activity of Cry1Ac protein expressed on MON 87701 × MON 89788 soybean against Heliothis virescens (Lepidoptera: Noctuidae). Pest Manag Sci 70:88–594. https://doi.org/10.1002/ps.3581

Article  CAS  Google Scholar 

Bernardi O, Sorgatto RJ, Barbosa AD, Domingues FA, Dourado PM, Carvalho RA, Martinelli S, Head GP, Omoto C (2014b) Low susceptibility of Spodoptera cosmioides, Spodoptera eridania and Spodoptera frugiperda (Lepidoptera: Noctuidae) to genetically modified soybean expressing Cry1Ac protein. Crop Prot 58:33–40. https://doi.org/10.1016/j.cropro.2014.01.001

Article  CAS  Google Scholar 

Bernardi D, Salmeron E, Horikoshi RJ, Bernardi O, Dourado PM, Carvalho RA, Martinelli S, Head GP, Omoto C (2015) Cross-resistance between Cry1 proteins in fall armyworm (Spodoptera frugiperda) may affect the durability of current pyramided Bt maize hybrids in Brazil. PLoS ONE 10:e0140130. https://doi.org/10.1371/journal.pone.0140130

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blanco CA, Chiaravalle W, Dalla-Rizza M, Farias JR, García-Degano MF, Gastaminza G, Mota-Sánchez D, Murúa MG, Omoto C, Pieralisi BK, Rodríguez J, Rodríguez-Maciel JC, Terán-Santofimio H, Terán-Vargas AP, Valencia SJ, Willink E (2016) Current situation of pests targeted by Bt crops in Latin America. Curr Opin Insect Sci 15:131–138. https://doi.org/10.1016/j.cois.2016.04.012

Article  CAS  PubMed  Google Scholar 

Boaventura D, Ulrich J, Lueke B, Bolzan A, Okuma D, Gutbrod O, Geibel S, Zeng Q, Dourado PM, Martinelli S (2020) Molecular characterization of Cry1F resistance in fall armyworm, Spodoptera frugiperda from Brazil. Insect Biochem Mol Biol 16:103280. https://doi.org/10.1016/j.ibmb.2019.103280

Article  CAS  Google Scholar 

Boiça Júnior AL, Souza BHS, Costa EN, Ribeiro ZA, Stout MJ (2015) Factors influencing expression of antixenosis in soybean to Anticarsia gemmatalis and Spodoptera frugiperda (Lepidoptera: Noctuidae). J Econ Entomol 108:317–325. https://doi.org/10.1093/jee/tou007

Article  CAS  PubMed  Google Scholar 

Boiça Júnior AL, Souza BHS, Costa EN, Paiva LB (2017) Influence of fall armyworm previous experience with soybean genotypes on larval feeding behavior. Arthropod-Plant Interact 11:89–97. https://doi.org/10.1007/s11829-016-9469-1

Article  Google Scholar 

Bortolotto OC, Pomari-Fernandes A, Bueno RDF, Bueno ADF, Kruz YKS, Queiroz AP, Sanzovo A, Ferreira RB (2015) The use of soybean integrated pest management in Brazil: a review. Agron Sci Biotechnol 1:25–32. https://doi.org/10.33158/ASB.2015v1i1p25

Article  Google Scholar 

Brookes G, Barfoot P (2018) Farm income and production impacts of using GM crop technology 1996–2016. GM Crops Food 9:59–89. https://doi.org/10.1080/21645689.2018.1464866

Article  PubMed  PubMed Central  Google Scholar 

Bueno AD, Panizzi AR, Hunt TE, Dourado PM, Pitta RM, Gonçalves J (2021) Challenges for adoption of integrated pest management (IPM): the soybean example. Neotrop Entomol 50:5–20. https://doi.org/10.1007/s13744-020-00792-9

Article  CAS  PubMed  Google Scholar 

Carrière Y, Degain BA, Harpold VS, Unnithan GC, Tabashnik BE (2020) Gene flow between Bt and non-Bt plants in a seed mixture increases dominance of resistance to pyramided Bt corn in Helicoverpa zea (Lepidoptera: Noctuidae). J Econ Entomol 113:2041–2051. https://doi.org/10.1093/jee/toaa138

Article  CAS  PubMed  Google Scholar 

Carrière Y, Degain BA, Tabashnik BE (2021) Effects of gene flow between Bt and non-Bt plants in a seed mixture of Cry1A. 105+Cry2Ab corn on performance of corn earworm in Arizona. Pest Manag Sci 77:2106–2113. https://doi.org/10.1002/ps.6239

Article  CAS  PubMed  Google Scholar 

Conab (2024) Companhia Nacional de Abastecimento. Acompanhamento da safra brasileira de grãos, v. 11, Safra 2023/24, n. 8, oitavo levantamento. Conab, Brasília

Dinglasan RR, DevenportM FL, Johnson JR, McHugh CA, Donelly-Doman M, Carucci DJ, Yates JR 3rd, Jacobs-Lorena M (2009) The Anopheles gambiae adult midgut peritrophic matrix proteome. Insect Biochem Mol Biol 39:125–134. https://doi.org/10.1016/j.ibmb.2008.10.010

Article  CAS  PubMed  Google Scholar 

Dixon RA, Steele CL (1999) Flavonoids and isoflavonoids: a gold mine for metabolic engineering. Trends Plant Sci 4:394–400. https://doi.org/10.1016/S1360-1385(99)01471-5

Article  CAS  PubMed  Google Scholar 

Eghrari K, Brito AH, Baldassi A, Balbuena TS, Fernandes OA, Môro GV (2019) Homozygous of Bt locus increases Bt protein expression and the control of Spodoptera frugiperda (Lepidoptera: Noctuidae) in maize hybrids. Crop Prot 124:104871. https://doi.org/10.1016/j.cropro.2019.104871

Article  CAS  Google Scholar 

Eghrari K, Oliveira SC, Nascimento AM, Queiroz B, Fatoretto J, Souza BHS, Fernandes OA, Môro GV (2021) The implications of homozygous vip3Aa20- and cry1Ab-maize on Spodoptera frugiperda control. J Pest Sci 95:115–127. https://doi.org/10.1007/s10340-021-01362-7

Article  CAS  Google Scholar 

Environmental Protection Agency (2011) Biopesticides registration action document: MON 89034 TC1507 MON 88017 DAS-59122–7 (SmartStax) Bt corn seed blend. http://www.regulations.gov/#!docketDetail;DEPA-HQ-OPP-2011–0362. Accessed 15 November 2023

Farias JR, Andow DA, Horikoshi RJ, Sorgatto RJ, Fresia P, dos Santos AC, Omoto C (2014) Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. Crop Prot 64:150–158. https://doi.org/10.1016/j.cropro.2014.06.019

Article  Google Scholar 

Fast PG, Angus TA (1965) Effects of parasporal inclusion of Bacillus thuringiensis var. Sotto Ishiwata on the permeability of the gut wall of Bombyx mori (Linnaeus) larvae. J Invertebr Pathol 20:29–32. https://doi.org/10.1016/00222011(65)90148-5

Article  CAS  PubMed  Google Scholar 

Fatoretto JC, Michel PA, Silva Filho MC, Silva N (2017) Adaptive potential of fall armyworm (Lepidoptera: Noctuidae) limits Bt trait durability in Brazil. J Integr Pest Manag 1:17. https://doi.org/10.1093/jipm/pmx011

Article  Google Scholar 

Gatehouse AMR, Ferry N, Edwards MG, Bell HA (2011) Insect-resistant biotech crops and their impacts on beneficial arthropods. Philos Trans R S Lond B Biol Sci 366:1438–1452. https://doi.org/10.1098/rstb.2010.0330

Article  CAS  Google Scholar 

Greene GL, Leppla NC, Dickerson WA (1976) Velvetbean caterpillar: a rearing procedure and artificial medium. J Econ Entomol 69:487–488. https://doi.org/10.1093/jee/69.4.487

Gringorten JL (2001) Ion balance in the lepidopteran midgut and insecticidal action of Bacillus thuringiensis. In: Ishaaya I (ed) Biochemical sites of insecticide action and resistance. Springer, Berlin, pp 167–207

Chapter  Google Scholar 

Hoffmann-Campo CB, Harborne JB, Mccaffery AR (2001) Pre-ingestive and post-ingestive effects of soya bean extracts and rutin on Trichoplusia ni. Entomol Exp Appl 98:181–194. https://doi.org/10.1046/j.1570-7458.2001.00773.x

Article  Google Scholar 

Hoffmann-Campo CB (1995) Role of the flavonoids in the natural resistance of soybean to Helioths virescens (F) and Trichoplusia ni (Hübner). Dissertation, The University of Reading, Reading

Horikoshi RJ, Bernardi O, Godoy DN, Semeão AA, Willse A, Corazza GO, Head G (2021) Resistance status of lepidopteran soybean pests following large-scale use of MON 87701×MON 89788 soybean in Brazil. Sci Rep 11:21323. https://doi.org/10.1038/s41598-021-00770-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Howe GA, Herde M (2015) Interaction of plant defense compounds with the insect gut: new insights from genomic and molecular analyses. Curr Opin Insect Sci 9:62–68. https://doi.org/10.1016/j.cois.2015.03.004

Article  PubMed 

留言 (0)

沒有登入
gif