Exploring Matrine and Oxymatrine as Potential Bioinsecticide to Control Drosophila suzukii (Diptera: Drosophilidae)

Abbott WS (1925) A method of computing the effectiveness of on insecticide. J Econ Entomol 18:265–267

Article  CAS  Google Scholar 

Ali S, Zhang C, Wang Z et al (2017) Toxicological and biochemical basis of synergism between the entomopathogenic fungus Lecanicillium muscarium and the insecticide matrine against Bemisia tabaci (Gennadius). Sci Rep 7:1–14. https://doi.org/10.1038/srep46558

Article  CAS  Google Scholar 

Ara ZG, Haque AR (2021) A comprehensive review on synthetic insecticides: toxicity to pollinators, associated risk to food security, and management approaches. J Biosyst Eng 46:254–272. https://doi.org/10.1007/s42853-021-00104-y

Article  Google Scholar 

Bloomquist JR, Jiang S, Taylor-Wells J et al (2018) Insecticidal activity and physiological actions of matrine, a plant natural product. ACS Symp Ser 1289:175–186. https://doi.org/10.1021/bk-2018-1289.ch009

Article  CAS  Google Scholar 

Blouquy L, Mottet C, Olivares J et al (2021) How varying parameters impact insecticide resistance bioassay: an example on the worldwide invasive pest Drosophila suzukii. PLoS One 16:1–19. https://doi.org/10.1371/journal.pone.0247756

Article  CAS  Google Scholar 

Cahenzli F, Strack T, Daniel C (2018) Screening of 25 different natural crop protection products against Drosophila suzukii. J Appl Entomol 142:563–577. https://doi.org/10.1111/jen.12510

Article  CAS  Google Scholar 

Celiz RJR, Ubaub LT (2019) Insecticidal effects of Matrine against flower thrips, Thrips hawaiiensis Morgan on ‘Cavendish’ banana. J South Pacific Agric 21:9–17

Google Scholar 

Chagnon M, Kreutzweiser D, Mitchell EAD et al (2015) Risks of large-scale use of systemic insecticides to ecosystem functioning and services. Environ Sci Pollut Res 22:119–134. https://doi.org/10.1007/s11356-014-3277-x

Article  CAS  Google Scholar 

da Januário TLS, de Oliveira EAF, da Yamamoto TLSJ et al (2021) Danos à saúde humana e ao meio ambiente ocasionados pelo uso de agrotóxicos na produção de produtos agrícolas no Brasil. Rev Ibero-Americana Ciências Ambient 12:462–477. https://doi.org/10.6008/cbpc2179-6858.2021.005.0037

Article  Google Scholar 

Fraimout A, Debat V, Fellous S et al (2017) Deciphering the routes of invasion of Drosophila suzukii by means of ABC random forest. Mol Biol Evol 34:980–996. https://doi.org/10.1093/molbev/msx050

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gadallah A, Mohammed H, El-Metwally M, Abdel-Rahman A (2014) The effect of teflubenzuron and oxymatrine on some biological aspects of Sesamia critica Led. (Lepidoptera: Noctuidae). J Plant Prot Pathol 5:837–847. https://doi.org/10.21608/jppp.2014.87997

Article  Google Scholar 

Garcia FRM (2020). Introduction to Drosophila suzukii management. In: Garcia, FRM (eds) Drosophila suzukii Management. Springer Nature, Switzerland, pp 01–10

Gargani E, Tarchi F, Frosinini R et al (2013) Notes on Drosophila suzukii Matsumura (Diptera Drosophilidae): field survey in Tuscany and laboratory evaluation of organic products. Redia 96:85–90

Google Scholar 

Giunti G, Benelli G, Palmeri V et al (2022) Non-target effects of essential oil-based biopesticides for crop protection: impact on natural enemies, pollinators, and soil invertebrates. Biol Control 176:105071. https://doi.org/10.1016/j.biocontrol.2022.105071

Article  CAS  Google Scholar 

Haye T, Girod P, Cuthbertson AGS et al (2016) Current SWD IPM tactics and their practical implementation in fruit crops across different regions around the world. J Pest Sci 89:643–651. https://doi.org/10.1007/s10340-016-0737-8

Article  Google Scholar 

Ja WW, Carvalho GB, Mak EM et al (2007) Prandiology of Drosophila and the CAFE assay. Proc Natl Acad Sci USA 104:8253–8256. https://doi.org/10.1073/pnas.0702726104

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jang M, Kim JK, Yoon KA et al (2017) Biological activity of Myrtaceae plant essential oils and their major components against Drosophila suzukii (Diptera: Drosophilidae). Pest Manag Sci 73:404–409. https://doi.org/10.1002/cnma.202300020

Article  CAS  PubMed  Google Scholar 

Kordestani M, Mahdian K, Baniameri V, Garjan AS (2022) Proteus, matrine, and pyridalyl toxicity and their sublethal effects on Orius laevigatus (Hemiptera: Anthocoridae). J Econ Entomol 115:573–581. https://doi.org/10.1093/jee/toab267

Article  CAS  PubMed  Google Scholar 

Krüger AP, Scheunemann T, Padilha AC et al (2021) Insecticide-mediated effects on mating success and reproductive output of Drosophila suzukii. Ecotoxicology 30:828–835. https://doi.org/10.1007/s10646-021-02402-9

Article  CAS  PubMed  Google Scholar 

Leahy J, Mendelsohn M, Kough J et al (2014) Biopesticide oversight and registration at the U.S. Environmental Protection Agency. ACS Symp Ser 1172:3–18. https://doi.org/10.1021/bk-2014-1172.ch001

Article  CAS  Google Scholar 

Liu L, Alam MS, Hirata K et al (2008) Actions of quinolizidine alkaloids on Periplaneta americana nicotinic acetylcholine receptors. Pest Manag Sci 64:1222–1228. https://doi.org/10.1002/ps.1622

Article  CAS  PubMed  Google Scholar 

Ministério da Agricultura, Pecuária e Abastecimento – MAPA (2023) Agrofit: Sistemas de Agrotóxicos Fitossanitários. http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons. Accessed 13 Aug 2023

Mohamed HA, Gad HA, Oraby HK (2023) Field larvicidal and pupicidal efficacy of the natural insecticide, oxymatrine against Culex species in Beni Suef Governorate, Egypt. J Nat Pestic Res 4:100030. https://doi.org/10.1016/j.napere.2023.100030

Article  Google Scholar 

Moral RA, Hinde J, Demétrio CGB (2017) Half-normal plots and overdispersed models in R: The hnp package. J Stat Softw 81. https://doi.org/10.18637/jss.v081.i10

R Core Team (2021) R: A language and environment for statistical computing

Schlesener DCH, Wollmann J, Krüger AP et al (2018) Biology and fertility life table of Drosophila suzukii on artificial diets. Entomol Exp Appl 166:932–936. https://doi.org/10.1111/eea.12736

Article  Google Scholar 

Shawer R (2020) Chemical control of Drosophila suzukii. In: Garcia, FRM (eds) Drosophila suzukii Management. Springer Nature, Switzerland, pp 113–142

Smirle MJ, Zurowski CL, Ayyanath MM et al (2017) Laboratory studies of insecticide efficacy and resistance in Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) populations from British Columbia, Canada. Pest Manag Sci 73:130–137. https://doi.org/10.1002/ps.4310

Article  CAS  PubMed  Google Scholar 

Therneau T (2023) A package for survival analysis in R. R package version 3.5–5. <https://CRAN.Rproject.org/package=survival>

Umar AM, Aisami A (2020) Acetylcholinesterase enzyme (AChE) as a biosensor and biomarker for pesticides: a mini review. Bull Environ Sci Sustain Manag (e-ISSN 2716-5353) 4:7–12. https://doi.org/10.54987/bessm.v4i1.526

Article  Google Scholar 

Van Timmeren S, Isaacs R (2013) Control of spotted wing drosophila, Drosophila suzukii, by specific insecticides and by conventional and organic crop protection programs. Crop Prot 54:126–133. https://doi.org/10.1016/j.cropro.2013.08.003

Article  CAS  Google Scholar 

Walsh DB, Bolda MP, Goodhue RE et al (2011) Drosophila suzukii (Diptera: Drosophilidae): invasive pest of ripening soft fruit expanding its geographic range and damage potential. J Integr Pest Manag 2:3–9. https://doi.org/10.1603/IPM10010

Article  Google Scholar 

Wickham H (2016) ggplot2: Elegant graphics for data analysis. Springer-Verlag, New York

Book  Google Scholar 

Xu J, Sun Z, Hao M et al (2020) Evaluation of biological activities, and exploration on mechanism of action of matrine–cholesterol derivatives. Bioorg Chem 94:103439. https://doi.org/10.1016/j.bioorg.2019.103439

Article  CAS  PubMed  Google Scholar 

Zanardi OZ, do Ribeiro LP, Ansante TF et al (2015) Bioactivity of a matrine-based biopesticide against four pest species of agricultural importance. Crop Prot 67:160–167. https://doi.org/10.1016/j.cropro.2014.10.010

Article  Google Scholar 

留言 (0)

沒有登入
gif