Erratum: Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants (The Lancet. (2016) 387(10027) (1513–1530)(S0140673616006188)(10.1016/S0140-6736(16)00618-8)), The Lancet, 2017;389(10068). https://doi.org/10.1016/S0140-6736(16)32060-8
Zimmet PZ, Magliano DJ, Herman WH, Shaw JE. Diabetes: a 21st century challenge. Lancet Diabetes Endocrinol. Jan. 2014;2(1):56–64. https://doi.org/10.1016/S2213-8587(13)70112-8.
Nathan DM. Diabetes: advances in diagnosis and treatment. JAMA. Sep. 2015;314(10):1052–62. https://doi.org/10.1001/jama.2015.9536.
Donath MY, Dinarello CA, Mandrup-Poulsen T. Targeting innate immune mediators in type 1 and type 2 diabetes. Nat Rev Immunol, Dec. 2019;19(12):734–746. https://doi.org/10.1038/s41577-019-0213-9
Gregg EW, et al. Changes in diabetes-related complications in the United States, 1990–2010. N Engl J Med. Apr. 2014;370(16):1514–23. https://doi.org/10.1056/NEJMOA1310799/SUPPL_FILE/NEJMOA1310799_DISCLOSURES.PDF.
Maurano MT et al. Sep., Systematic Localization of Common Disease-Associated Variation in Regulatory DNA. Science (1979), 2012;337(6099):1190–1195. https://doi.org/10.1126/science.1222794
Reddy MA, Zhang E, Natarajan R. Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia. Mar. 2015;58(3):443–55. https://doi.org/10.1007/s00125-014-3462-y.
Reddy MA, Natarajan R. Role of epigenetic mechanisms in the vascular complications of diabetes. Subcell Biochem. 2013;61:435–54. https://doi.org/10.1007/978-94-007-4525-4_19.
Article PubMed PubMed Central CAS Google Scholar
Keating ST, El-Osta A. Epigenetic changes in diabetes. Clin Genet. Jul. 2013;84(1):1–10. https://doi.org/10.1111/cge.12121.
Dabelea D et al. Dec., Intrauterine exposure to diabetes conveys risks for type 2 diabetes and obesity: a study of discordant sibships. Diabetes. 2000;49(12):2208–11. https://doi.org/10.2337/diabetes.49.12.2208
Bird A. Perceptions of epigenetics. Nature. May 2007;447(7143):396–8. https://doi.org/10.1038/nature05913
Kato M, Natarajan R. Diabetic nephropathy–emerging epigenetic mechanisms. Nat Rev Nephrol. Sep. 2014;10(9):517–30. https://doi.org/10.1038/nrneph.2014.116.
Gilbert ER, Liu D. Epigenetics: the missing link to understanding β-cell dysfunction in the pathogenesis of type 2 diabetes. Epigenetics. Aug. 2012;7(8):841–52. https://doi.org/10.4161/epi.21238
Franco R, Schoneveld O, Georgakilas AG, Panayiotidis MI. Oxidative stress, DNA methylation and carcinogenesis. Cancer Lett. Jul. 2008;266(1):6–11. https://doi.org/10.1016/j.canlet.2008.02.026.
Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev. Apr. 2009;23(7):781–3. https://doi.org/10.1101/gad.1787609
Li E, Zhang Y. DNA methylation in mammals. Cold Spring Harb Perspect Biol. May 2014;6(5):a019133. https://doi.org/10.1101/cshperspect.a019133.
Jung M, Pfeifer GP. Aging and DNA methylation. BMC Biol. 2015;13(1):7. https://doi.org/10.1186/s12915-015-0118-4.
Article PubMed PubMed Central CAS Google Scholar
Gibney ER, Nolan CM. Epigenetics and gene expression. Heredity (Edinb). Jul. 2010;105(1):4–13. https://doi.org/10.1038/hdy.2010.54
Chen QW, Zhu XY, Li YY, Meng ZQ. Epigenetic regulation and cancer (review). Oncol Rep. Feb. 2014;31(2):523–32. https://doi.org/10.3892/or.2013.2913
Bansal A, Pinney SE. DNA methylation and its role in the pathogenesis of diabetes. Pediatr Diabetes. May 2017;18(3):167–77. https://doi.org/10.1111/pedi.12521.
Dayeh T, Ling C. Does epigenetic dysregulation of pancreatic islets contribute to impaired insulin secretion and type 2 diabetes? Biochem Cell Biol. Oct. 2015;93(5):511–21. https://doi.org/10.1139/bcb-2015-0057
Bochtler M, Kolano A, Xu G-L. DNA demethylation pathways: additional players and regulators. BioEssays. Jan. 2017;39(1):1–13. https://doi.org/10.1002/bies.201600178.
Liu J, Lang G, Shi J. Epigenetic regulation of pdx-1 in type 2 diabetes mellitus. Diabetes, Metabolic Syndrome and Obesity. Dove Medical Press Ltd, 2021;14:431–442. https://doi.org/10.2147/DMSO.S291932
Czech MP. Insulin action and resistance in obesity and type 2 diabetes. Nat Med. Jul. 2017;23(7):804–14. https://doi.org/10.1038/nm.4350.
Dimitriadis G, Mitrou P, Lambadiari V, Maratou E, Raptis SA. Insulin effects in muscle and adipose tissue. Diabetes Res Clin Pract. Aug. 2011;93 Suppl 1, pp. S52-9. https://doi.org/10.1016/S0168-8227(11)70014-6
Hay CW, Docherty K. Comparative analysis of insulin gene promoters: implications for diabetes research. Diabetes. Dec. 2006;55(12):3201–13. https://doi.org/10.2337/db06-0788
Kuroda A et al. Sep., Insulin gene expression is regulated by DNA methylation. PLoS One. 2009;4(9):e6953. https://doi.org/10.1371/journal.pone.0006953
Yang BT, et al. Insulin promoter DNA methylation correlates negatively with insulin gene expression and positively with HbA(1c) levels in human pancreatic islets. Diabetologia. Feb. 2011;54(2):360–7. https://doi.org/10.1007/s00125-010-1967-6.
Ishikawa K, et al. Long-term pancreatic Beta cell exposure to high levels of glucose but not palmitate induces DNA methylation within the insulin gene promoter and represses transcriptional activity. PLoS ONE. Feb. 2015;10(2):e0115350. https://doi.org/10.1371/journal.pone.0115350.
Yu H, Pask AJ, Hu Y, Shaw G, Renfree MB. ARX/Arx is expressed in germ cells during spermatogenesis in both marsupial and mouse. Reproduction. Mar. 2014;147(3):279–89. https://doi.org/10.1530/REP-13-0361
Wilcox CL, Terry NA, May CL. Arx polyalanine expansion in mice leads to reduced pancreatic α-cell specification and increased α-cell death. PLoS ONE. 2013;8(11):e78741. https://doi.org/10.1371/journal.pone.0078741.
Article PubMed PubMed Central CAS Google Scholar
Dhawan S, Georgia S, Tschen S-I, Fan G, Bhushan A. Pancreatic β cell identity is maintained by DNA methylation-mediated repression of Arx. Dev Cell. Apr. 2011;20(4):419–29. https://doi.org/10.1016/j.devcel.2011.03.012.
Roy N, et al. PDX1 dynamically regulates pancreatic ductal adenocarcinoma initiation and maintenance. Genes Dev. Dec. 2016;30(24):2669–83. https://doi.org/10.1101/gad.291021.116.
Yang BT et al. Jul., Increased DNA methylation and decreased expression of PDX-1 in pancreatic islets from patients with type 2 diabetes. Mol Endocrinol. 2012;26(7):1203–12. https://doi.org/10.1210/me.2012-1004
Hall E, Dayeh T, Kirkpatrick CL, Wollheim CB, Nitert MD, Ling C. DNA methylation of the glucagon-like peptide 1 receptor (GLP1R) in human pancreatic islets. BMC Med Genet. Jul. 2013;14:76. https://doi.org/10.1186/1471-2350-14-76
Doyle ME, Egan JM. Mechanisms of action of glucagon-like peptide 1 in the pancreas. Pharmacol Ther. Mar. 2007;113(3):546–93. https://doi.org/10.1016/j.pharmthera.2006.11.007
Wu H, Deng X, Shi Y, Su Y, Wei J, Duan H. PGC-1α, glucose metabolism and type 2 diabetes mellitus. J Endocrinol. Jun. 2016;229(3):R99–R115. https://doi.org/10.1530/JOE-16-0021
Yoon JC et al. Jul., Suppression of β Cell Energy Metabolism and Insulin Release by PGC-1α. Dev Cell. 2003;5(1):73–83. https://doi.org/10.1016/S1534-5807(03)00170-9
Bozec A et al. Dec., Osteoblast-specific expression of Fra-2/AP-1 controls adiponectin and osteocalcin expression and affects metabolism. J Cell Sci. 2013;126(Pt 23):5432–40. https://doi.org/10.1242/jcs.134510
Ling C et al. Apr., Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion. Diabetologia. 2008;51(4):615–22. https://doi.org/10.1007/s00125-007-0916-5
Dayeh T, et al. DNA methylation of loci within ABCG1 and PHOSPHO1 in blood DNA is associated with future type 2 diabetes risk. Epigenetics. Jul. 2016;11:482–8. https://doi.org/10.1080/15592294.2016.1178418.
Volkov P et al. Apr., Whole-Genome Bisulfite Sequencing of Human Pancreatic Islets Reveals Novel Differentially Methylated Regions in Type 2 Diabetes Pathogenesis. Diabetes. 2017;66(4):1074–1085. https://doi.org/10.2337/DB16-0996
Jeon J-P, Koh I-U, Choi N-H, Kim B-J, Han B-G, Lee S. Differential DNA methylation of MSI2 and its correlation with diabetic traits, 2017, https://doi.org/10.1371/journal.pone.0177406
Kaneto H, Katakami N, Matsuhisa M, Matsuoka T. A. Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediat Inflamm. 2010;2010:11. https://doi.org/10.1155/2010/453892.
Wajchenberg BL. beta-cell failure in diabetes and preservation by clinical treatment. Endocr Rev. Apr. 2007;28(2):187–218. https://doi.org/10.1210/10.1210/er.2006-0038
Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44–84. https://doi.org/10.1016/j.biocel.2006.07.001.
Article PubMed CAS Google Scholar
Robertson R, Zhou H, Zhang T, Harmon JS. Chronic oxidative stress as a mechanism for glucose toxicity of the beta cell in type 2 diabetes. Cell Biochem Biophys. 2007;48:2–3. https://doi.org/10.1007/s12013-007-0026-5.
Newsholme P, Keane KN, Carlessi R, Cruzat V. Oxidative stress pathways in pancreatic β-cells and insulin-sensitive cells and tissues: importance to cell metabolism, function, and dysfunction. Am J Physiol Cell Physiol. Sep. 2019;317(3):C420–33. https://doi.org/10.1152/ajpcell.00141.2019.
Gerber PA, Rutter GA. The Role of Oxidative Stress and Hypoxia in Pancreatic Beta-Cell Dysfunction in Diabetes Mellitus. Antioxid Redox Signal. Apr. 2017;26(10):501–518. https://doi.org/10.1089/ars.2016.6755
Gurgul-Convey E, Mehmeti I, Plötz T, Jörns A, Lenzen S. Sensitivity profile of the human EndoC-βH1 beta cell line to proinflammatory cytokines. Diabetologia. Oct. 2016;59(10):2125–33. https://doi.org/10.1007/s00125-016-4060-y
Stancill JS, Broniowska KA, Oleson BJ, Naatz A, Corbett JA. Pancreatic β-cells detoxify H2O2 through the peroxiredoxin/thioredoxin antioxidant system. J Biol Chem. Mar. 2019;294(13):4843–4853. https://doi.org/10.1074/jbc.RA118.006219
Stancill JS, Happ JT, Broniowska KA, Hogg N, Corbett JA. Peroxiredoxin 1 plays a primary role in protecting pancreatic β-cells from hydrogen peroxide and peroxynitrite. Am J Physiol Regul Integr Comp Physiol. May 2020;318(5):R1004–13. https://doi.org/10.1152/ajpregu.00011.2020.
Eguchi N, Vaziri ND, Dafoe DC, Ichii H. The Role of Oxidative Stress in Pancreatic β Cell Dysfunction in Diabetes. Int J Mol Sci. Feb. 2021;22(4). https://doi.org/10.3390/ijms22041509
Pi J, et al. ROS signaling, oxidative stress and Nrf2 in pancreatic beta-cell function. Toxicol Appl Pharmacol. Apr. 2010;244(1):77–83. https://doi.org/10.1016/j.taap.2009.05.025.
Llanos P, Contreras-Ferrat A, Barrientos G, Valencia M, Mears D, Hidalgo C. Glucose-dependent insulin secretion in pancreatic β-Cell islets from male rats requires Ca2 + release via ROS-Stimulated ryanodine receptors. PLoS ONE. 2015;10(6):e0129238. https://doi.org/10.1371/journal.pone.0129238.
Article PubMed PubMed Central CAS Google Scholar
Dinić S, et al. CXCL12 protects pancreatic β-cells from oxidative stress by a Nrf2-induced increase in catalase expression and activity. Proc Jpn Acad Ser B Phys Biol Sci. 2016;92(9):436–54. https://doi.org/10.2183/pjab.92.436.
Article PubMed PubMed Central CAS Google Scholar
Remedi MS, Emfinger C. Pancreatic β-cell identity in diabetes. Diabetes Obes Metab. Sep. 2016;18(Suppl 1):110–6. https://doi.org/10.1111/dom.12727
Mihailović M, Dinić S, Arambašić Jovanović J, Uskoković A, Grdović N, Vidaković M. The Influence of Plant Extracts and Phytoconstituents on Antioxidant Enzymes Activity and Gene Expression in the Prevention and Treatment of Impaired Glucose Homeostasis and Diabetes Complications. Antioxidants (Basel). Mar. 2021;10(3). https://doi.org/10.3390/antiox10030480
Radi R. Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine. Proc Natl Acad Sci U S A. Jun. 2018;115(23):5839–5848. https://doi.org/10.1073/pnas.1804932115
Garcia Soriano F et al. Jan., Diabetic endothelial dysfunction: the role of poly(ADP-ribose) polymerase activation. Nat Med. 2001;7(1):108–13. https://doi.org/10.1038/83241
Virág L, Szabó C. The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev. Sep. 2002;54(3):375–429. https://doi.org/10.1124/pr.54.3.375
Du XL et al. Oct., Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc Natl Acad Sci U S A. 2002;97(22):12222–6. https://doi.org/10.1073/pnas.97.22.12222
Poitout V, Robertson RP. Glucolipotoxicity: fuel excess and beta-cell dysfunction. Endocr Rev. May 2008;29(3):351–66. https://doi.org/10.1210/er.2007-0023.
Rojas J et al. Pancreatic Beta Cell Death: Novel Potential Mechanisms in Diabetes Therapy. J Diabetes Res. 2018, p. 9601801. https://doi.org/10.1155/2018/9601801
Bergsbaken T, Fink SL, Cookson BT. Pyroptosis: host cell death and inflammation. Nat Rev Microbiol. Feb. 2009;7(2):99–109. https://doi.org/10.1038/nrmicro2070
Wen H, et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol. May 2011;12(5):408–15. https://doi.org/10.1038/ni.2022.
Arafat HA et al. Feb., Osteopontin protects the islets and beta-cells from interleukin-1 beta-mediated cytotoxicity through negative feedback regulation of nitric oxide. Endocrinology. 2007;148(2):575–84. https://doi.org/10.1210/en.2006-0970
Houstis N, Rosen ED, Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature. Apr. 2006;440(7086):944–8. https://doi.org/10.1038/nature04634
Koshkin V, Wang X, Scherer PE, Chan CB, Wheeler MB. Mitochondrial functional state in clonal pancreatic beta-cells exposed to free fatty acids. J Biol Chem. May 2003;278(22):19709–15. https://doi.org/10.1074/jbc.M209709200.
Hagman DK, Hays LB, Parazzoli SD, Poitout V. Palmitate inhibits insulin gene expression by altering PDX-1 nuclear localization and reducing MafA expression in isolated rat islets of Langerhans. J Biol Chem. Sep. 2005;280(37):32413–8. https://doi.org/10.1074/jbc.M506000200
Đorđević M, et al. Centaurium erythraea extract improves survival and functionality of pancreatic beta-cells in diabetes through multiple routes of action. J Ethnopharmacol. Oct. 2019;242:112043. https://doi.org/10.1016/j.jep.2019.112043.
Rehman A, Nourooz-Zadeh J, Möller W, Tritschler H, Pereira P, Halliwell B. Increased oxidative damage to all DNA bases in patients with type II diabetes mellitus. FEBS Lett. Apr. 1999;448(1):120–2. https://doi.org/10.1016/s0014-5793(99)00339-7.
Shin CS, et al. Serum 8-hydroxy-guanine levels are increased in diabetic patients. Diabetes Care. Apr. 2001;24(4):733–7. https://doi.org/10.2337/diacare.24.4.733.
Tanaka Y, Tran POT, Harmon J, Robertson RP. A role for glutathione peroxidase in protecting pancreatic beta cells against oxidative stress in a model of glucose toxicity. Proc Natl Acad Sci U S A. Sep. 2002;99(19):12363–8. https://doi.org/10.1073/pnas.192445199
Guerra SD et al. Mar., Functional and molecular defects of pancreatic islets in human type 2 diabetes. Diabetes. 2005;54(3):727–35. https://doi.org/10.2337/diabetes.54.3.727
Zhou Y. The Protective effects of Cryptochlorogenic Acid on β-Cells function in diabetes in vivo and vitro via inhibition of Ferroptosis. Diabetes Metab Syndr Obes. 2020;13:1921–31. https://doi.org/10.2147/DMSO.S249382.
Article PubMed PubMed Central CAS Google Scholar
Yang X-D, Yang Y-Y. Ferroptosis as a Novel Therapeutic Target for Diabetes and its complications. Front Endocrinol (Lausanne). 2022;13:853822. https://doi.org/10.3389/fendo.2022.853822.
Stockwell BR, et al. Ferroptosis: a regulated cell death Nexus linking metabolism, Redox Biology, and Disease. Cell. Oct. 2017;171(2):273–85. https://doi.org/10.1016/j.cell.2017.09.021.
Stancic A et al. Ferroptosis as a Novel Determinant of β-Cell Death in Diabetic Conditions. Oxid Med Cell Longev. 2022, p. 3873420. https://doi.org/10.1155/2022/3873420
Rocchi A, He C. Emerging roles of autophagy in metabolism and metabolic disorders. Front Biol (Beijing). Apr. 2015;10(2):154–64. https://doi.org/10.1007/s11515-015-1354-2.
Muralidharan C, Linnemann AK. β-Cell autophagy in the pathogenesis of type 1 diabetes. Am J Physiol Endocrinol Metab. Sep. 2021;321(3):E410–6.
留言 (0)