Computational Medicine: What Electrophysiologists Should Know to Stay Ahead of the Curve

Bucelli M, Zingaro A, Africa PC, Fumagalli I, Dede’ L, Quarteroni A. A mathematical model that integrates cardiac electrophysiology, mechanics, and fluid dynamics: Application to the human left heart. Int J Numer Method Biomed Eng. 2023;39(3):e3678.

Corrado C, Avezzù A, Lee AWC, Mendoca Costa C, Roney CH, Strocchi M, et al. Using cardiac ionic cell models to interpret clinical data. WIREs Mech Dis. 2021;13:e1508.

Article  CAS  PubMed  Google Scholar 

Despa S, Vigmond E. From single myocyte to whole heart: the Intricate Dance of Electrophysiology and modeling. Circ Res. 2016;118:184–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ni H, Grandi E. Computational modeling of Cardiac Electrophysiology. Methods Mol Biol. 2024;2735:63–103.

Article  CAS  PubMed  Google Scholar 

Boyle PM, Zghaib T, Zahid S, Ali RL, Deng D, Franceschi WH et al. Computationally guided personalized targeted ablation of persistent atrial fibrillation. Nat Biomedical Eng. 2019.

Prakosa A, Arevalo HJ, Deng D, Boyle PM, Nikolov PP, Ashikaga H, et al. Personalized virtual-heart technology for guiding the ablation of infarct-related ventricular tachycardia. Nat Biomedical Eng. 2018;2:732–40.

Article  Google Scholar 

Gaur N, Qi X-Y, Benoist D, Bernus O, Coronel R, Nattel S, et al. A computational model of pig ventricular cardiomyocyte electrophysiology and calcium handling: translation from pig to human electrophysiology. PLoS Comput Biol. 2021;17:e1009137.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Diprose WK, Buist N, Hua N, Thurier Q, Shand G, Robinson R. Physician understanding, explainability, and trust in a hypothetical machine learning risk calculator. J Am Med Inf Assoc. 2020;27:592–600.

Article  Google Scholar 

Lundberg S, Lee S-I. A Unified Approach to Interpreting Model Predictions [Internet]. arXiv; 2017 [cited 2024 Aug 28]. https://arxiv.org/abs/1705.07874

Simonyan K, Vedaldi A, Zisserman A. Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps [Internet]. arXiv; 2013 [cited 2024 Aug 28]. https://arxiv.org/abs/1312.6034

Corrado C, Williams S, Roney C, Plank G, O’Neill M, Niederer S. Using machine learning to identify local cellular properties that support re-entrant activation in patient-specific models of atrial fibrillation. Europace. 2021;23:i12–20.

Article  PubMed  PubMed Central  Google Scholar 

Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods. 2021;18:203–11.

Article  CAS  PubMed  Google Scholar 

Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88.

Article  PubMed  Google Scholar 

Ruiz Herrera C, Grandits T, Plank G, Perdikaris P, Sahli Costabal F, Pezzuto S. Physics-informed neural networks to learn cardiac fiber orientation from multiple electroanatomical maps. Engineering with Computers. 2022;38:3957–73.

Gillette K, Gsell MAF, Nagel C, Bender J, Winkler B, Williams SE, et al. MedalCare-XL: 16,900 healthy and pathological synthetic 12 lead ECGs from electrophysiological simulations. Sci Data. 2023;10:531.

Article  PubMed  PubMed Central  Google Scholar 

Rodero C, Strocchi M, Marciniak M, Longobardi S, Whitaker J, O’Neill MD, et al. Correction: linking statistical shape models and simulated function in the healthy adult human heart. PLoS Comput Biol. 2022;18:e1010196.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gillette K, Gsell MAF, Strocchi M, Grandits T, Neic A, Manninger M, et al. A personalized real-time virtual model of whole heart electrophysiology. Front Physiol. 2022;13:907190.

Article  PubMed  PubMed Central  Google Scholar 

Turakhia MP, Guo JD, Keshishian A, Delinger R, Sun X, Ferri M, et al. Contemporary prevalence estimates of undiagnosed and diagnosed atrial fibrillation in the United States. Clin Cardiol. 2023;46:484–93.

Article  PubMed  PubMed Central  Google Scholar 

Joglar JA, Chung MK, Armbruster AL, Benjamin EJ, Chyou JY, Cronin EM et al. 2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2024;149(1):e1-e156.

Chahine Y, Magoon MJ, Maidu B, Del Álamo JC, Boyle PM, Akoum N. Machine learning and the Conundrum of Stroke Risk Prediction. Arrhythm Electrophysiol Rev. 2023;12:e07.

Article  PubMed  PubMed Central  Google Scholar 

Bifulco SF, Macheret F, Scott GD, Akoum N, Boyle PM. Explainable Machine Learning to predict anchored reentry substrate created by Persistent Atrial Fibrillation ablation in computational models. J Am Heart Assoc. 2023;12:e030500.

Article  PubMed  PubMed Central  Google Scholar 

Feng Y, Dubois R, Hocini M, Vigmond EJ. Atrial periodic source spectrum from preoperative body surface potentials predicts long-term recurrence of Atrial Fibrillation. IEEE Trans Biomed Eng. 2023;70:2131–8.

Article  PubMed  Google Scholar 

Frerich S, Malik R, Georgakis MK, Sinner MF, Kittner SJ, Mitchell BD, et al. Cardiac risk factors for stroke: a comprehensive mendelian randomization study. Stroke. 2022;53:e130–5.

Article  PubMed  Google Scholar 

İçen YK, Koca H, Sümbül HE, Yıldırım A, Koca F, Yıldırım A, et al. Relationship between coarse F waves and thromboembolic events in patients with permanent atrial fibrillation. J Arrhythmia. 2020;36:1025–31.

Article  Google Scholar 

Khurshid S, Friedman S, Reeder C, Di Achille P, Diamant N, Singh P, et al. ECG-Based deep learning and clinical risk factors to Predict Atrial Fibrillation. Circulation. 2022;145:122–33.

Article  CAS  PubMed  Google Scholar 

Lankveld T, Zeemering S, Scherr D, Kuklik P, Hoffmann BA, Willems S et al. Atrial Fibrillation Complexity Parameters Derived From Surface ECGs Predict Procedural Outcome and Long-Term Follow-Up of Stepwise Catheter Ablation for Atrial Fibrillation. Circ Arrhythm Electrophysiol. 2016;9(2):e003354.

Lip GYH, Tran G, Genaidy A, Marroquin P, Estes C, Landsheft J. Improving dynamic stroke risk prediction in non-anticoagulated patients with and without atrial fibrillation: comparing common clinical risk scores and machine learning algorithms. Eur Heart J - Qual Care Clin Outcomes. 2022;8:548–56.

Article  PubMed  Google Scholar 

McCann A, Vesin J-M, Pruvot E, Roten L, Sticherling C, Luca A. ECG-Based indices to characterize Persistent Atrial Fibrillation before and during stepwise catheter ablation. Front Physiol. 2021;12:654053.

Article  PubMed  PubMed Central  Google Scholar 

Serhal H, Abdallah N, Marion J-M, Chauvet P, Oueidat M, Humeau-Heurtier A. Overview on prediction, detection, and classification of atrial fibrillation using wavelets and AI on ECG. Comput Biol Med. 2022;142:105168.

Article  PubMed  Google Scholar 

Zingaro A, Ahmad Z, Kholmovski E, Sakata K, Dede’ L, Morris AK, et al. A comprehensive stroke risk assessment by combining atrial computational fluid dynamics simulations and functional patient data. Sci Rep. 2024;14:9515.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bifulco SF, Scott GD, Sarairah S, Birjandian Z, Roney CH, Niederer SA, et al. Computational modeling identifies embolic stroke of undetermined source patients with potential arrhythmic substrate. eLife. 2021;10:e64213.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Telle Å, Bargellini C, Chahine Y, Del Álamo JC, Akoum N, Boyle PM. Personalized biomechanical insights in atrial fibrillation: opportunities & challenges. Expert Rev Cardiovasc Ther. 2023;1–21.

Macheret F, Bifulco SF, Scott GD, Kwan KT, Chahine Y, Afroze T, et al. Comparing inducibility of re-entrant arrhythmia in patient-specific computational models to clinical atrial fibrillation phenotypes. JACC Clin Electrophysiol. 2023;9:2149–62.

Article  PubMed  Google Scholar 

Sánchez J, Trenor B, Saiz J, Dössel O, Loewe A. Fibrotic remodeling during Persistent Atrial Fibrillation: in Silico Investigation of the role of Calcium for Human Atrial Myofibroblast Electrophysiology. Cells. 2021;10:2852.

Article  PubMed  PubMed Central  Google Scholar 

Dasí A, Roy A, Sachetto R, Camps J, Bueno-Orovio A, Rodriguez B. In-silico drug trials for precision medicine in atrial fibrillation: from ionic mechanisms to electrocardiogram-based predictions in structurally-healthy human atria. Front Physiol. 2022;13:966046.

Article  PubMed  PubMed Central  Google Scholar 

Dasí A, Nagel C, Pope MTB, Wijesurendra RS, Betts TR, Sachetto R, et al. Silico TRials guide optimal stratification of ATrIal FIbrillation patients to catheter ablation and pharmacological medicaTION: the i-STRATIFICATION study. Europace. 2024;26:euae150.

de la Sánchez AM, Gómez-Cid L, Domínguez-Sobrino A, Fernández-Avilés F, Berenfeld O, Atienza F. Artificial intelligence analysis of the impact of fibrosis in arrhythmogenesis and drug response. Front Physiol. 2022;13:1025430.

Article  Google Scholar 

Marijon E, Narayanan K, Smith K, Barra S, Basso C, Blom MT, et al. The Lancet Commission to reduce the global burden of sudden cardiac death: a call for multidisciplinary action. Lancet. 2023;402:883–936.

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif