Romoli M, Mazzocchetti P, D’Alonzo R, et al. Valproic acid and epilepsy: from molecular mechanisms to clinical evidences. Curr Neuropharmacol. 2019;17(10):926–46.
Article CAS PubMed PubMed Central Google Scholar
Zito JM, Derivan AT, Kratochvil CJ, Safer DJ, Fegert JM, Greenhill LL. Off-label psychopharmacologic prescribing for children: history supports close clinical monitoring. Child Adolesc Psychiatry Ment Health. 2008;2(1):24.
Article PubMed PubMed Central Google Scholar
Savla R, Browne J, Plassat V, Wasan KM, Wasan EK. Review and analysis of FDA approved drugs using lipid-based formulations. Drug Dev Ind Pharm. 2017;43(11):1743–58.
Article CAS PubMed Google Scholar
Depacon (valproate sodium) for intravenous injection Package Insert. Available from https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/020593s026lbl.pdf. Accessed 10 Feb 2024.
Dutta S, Reed RC. Distinct absorption characteristics of oral formulations of valproic acid/divalproex available in the United States. Epilepsy Res. 2007;73(3):275–83.
Article CAS PubMed Google Scholar
Dutta S, Faught E, Limdi NA. Valproate protein binding following rapid intravenous administration of high doses of valproic acid in patients with epilepsy. J Clin Pharm Ther. 2007;32(4):365–71.
Article CAS PubMed Google Scholar
Patsalos PN, Berry DJ, Bourgeois BF, et al. Antiepileptic drugs–best practice guidelines for therapeutic drug monitoring: a position paper by the subcommission on therapeutic drug monitoring. ILAE commission on therapeutic strategies. Epilepsia. 2008;49(7):1239–76.
Article CAS PubMed Google Scholar
Rahman M, Awosika AO, Nguyen H. Valproic acid. [Updated 2024 Mar 19]. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024. Available from https://www.ncbi.nlm.nih.gov/books/NBK559112/. Accessed 24 June 2024.
Panomvana Na Ayudhya D, Suwanmanee J, Visudtibhan A. Pharmacokinetic parameters of total and unbound valproic acid and their relationships to seizure control in epileptic children. Am J Ther. 2006;13(3):211–7.
Weaving G, Batstone GF, Jones RG. Age and sex variation in serum albumin concentration: an observational study. Ann Clin Biochem. 2016;53(Pt 1):106–11.
Article CAS PubMed Google Scholar
Mclntyre N, Rosalki S. Tests of the functions of the liver. In: Williams DL, Marks V, editors. Scientific foundations of biochemistry in clinical practice, 2nd ed. 1994. p. 383–98.https://doi.org/10.1016/B978-0-7506-0167-2.50027-3
Conner TM, Nikolian VC, Georgoff PE, et al. Physiologically based pharmacokinetic modeling of disposition and drug–drug interactions for valproic acid and divalproex. Eur J Pharm Sci. 2018;111:465–81.
Article CAS PubMed Google Scholar
Depakene (valproic acid) Package insert. Available from https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/018081s071,018082s054lbl.pdf. Accessed 10 Feb 2024.
Wallenburg E, Klok B, de Jong K, et al. Monitoring protein-unbound valproic acid serum concentrations in clinical practice. Ther Drug Monit. 2017;39(3):269–72.
Article CAS PubMed Google Scholar
Burkat PM. Physiologically based pharmacokinetic and pharmacodynamic modeling of diazepam: unbound interstitial brain concentrations correspond to clinical end points. J Clin Pharmacol. 2022;62(10):1297–309.
Article CAS PubMed Google Scholar
Thiel C, Cordes H, Fabbri L, et al. A comparative analysis of drug-induced hepatotoxicity in clinically relevant situations. PLoS Comput Biol. 2017;13(2): e1005280.
Article PubMed PubMed Central Google Scholar
Ogungbenro K, Aarons L, CRESim & Epi-CRESim Project Groups. A physiologically based pharmacokinetic model for valproic acid in adults and children. Eur J Pharm Sci. 2014;63:45–52.
Article CAS PubMed Google Scholar
Rodgers T, Leahy D, Rowland M. Physiologically based pharmacokinetic modeling 1: predicting the tissue distribution of moderate-to-strong bases [published correction appears in J Pharm Sci. 2007 Nov;96(11):3151-2]. J Pharm Sci. 2005;94(6):1259–76.
Article CAS PubMed Google Scholar
Maharaj AR, Barrett JS, Edginton AN. A workflow example of PBPK modeling to support pediatric research and development: case study with lorazepam. AAPS J. 2013;15(2):455–64.
Article CAS PubMed PubMed Central Google Scholar
Dickinson RG, Hooper WD, Dunstan PR, Eadie MJ. Urinary excretion of valproate and some metabolites in chronically treated patients. Ther Drug Monit. 1989;11(2):127–33.
Article CAS PubMed Google Scholar
Levy RH, Rettenmeier AW, Anderson GD, et al. Effects of polytherapy with phenytoin, carbamazepine, and stiripentol on formation of 4-ene-valproate, a hepatotoxic metabolite of valproic acid. Clin Pharmacol Ther. 1990;48(3):225–35.
Article CAS PubMed Google Scholar
Ghodke-Puranik Y, Thorn CF, Lamba JK, et al. Valproic acid pathway: pharmacokinetics and pharmacodynamics. Pharmacogenet Genomics. 2013;23(4):236–41.
Article CAS PubMed PubMed Central Google Scholar
Open Systems Pharmacology Suite Manual Version 7.0 Publication. Open Systems Pharmacology Suite Community License. 2017.
Parkinson H, Sarkans U, Kolesnikov N, et al. ArrayExpress update—an archive of microarray and high-throughput sequencing-based functional genomics experiments. Nucleic Acids Res. 2011;39(Database issue):D1002–D1004.
Mager DE, Krzyzanski W. Quasi-equilibrium pharmacokinetic model for drugs exhibiting target-mediated drug disposition. Pharm Res. 2005;22(10):1589–96.
Article CAS PubMed Google Scholar
Llewelyn VK, Mangan MF, Glass BD. Stability of sodium valproate tablets repackaged into dose administration aids. J Pharm Pharmacol. 2010;62(7):838–43.
Article CAS PubMed Google Scholar
Yang S, Wang X, Jia J, Li P. Release property study on the novel divalproex sodium enteric-coated capsules. Saudi Pharm J. 2016;24(3):245–9.
Article CAS PubMed PubMed Central Google Scholar
Akhtar J, Rana P, Jhanwar B. Formulation and evaluation of divalproex sodium enteric coated tablets. J Sci. 2011;1:21.
Qiu Y, Bollinger JD, et al, inventors; Abbott Laboratories, assignee. Controlled release formulation of divalproex sodium. US 6,720,004 B2. April 13, 2004.
Denney W, Duvvuri S, Buckeridge C. Simple, automatic noncompartmental analysis: the PKNCA R package. J Pharmacokinet Pharmacodyn. 2015;42(11–107):S65.
Horowitz IN, Tai K. Hypoalbuminemia in critically ill children. Arch Pediatr Adolesc Med. 2007;161(11):1048–52.
Gómez Bellver MJ, García Sánchez MJ, Alonso González AC, Santos Buelga D, Domínguez-Gil A. Plasma protein binding kinetics of valproic acid over a broad dosage range: therapeutic implications. J Clin Pharm Ther. 1993;18(3):191–7.
Badée J, Fowler S, de Wildt SN, Collier AC, Schmidt S, Parrott N. The ontogeny of UDP-glucuronosyltransferase enzymes, recommendations for future profiling studies and application through physiologically based pharmacokinetic modelling. Clin Pharmacokinet. 2019;58(2):189–211.
Krekels EHJ, Rower JE, Constance JE, Knibbe CAJ, Sherwin CMT. Hepatic drug metabolism in pediatric patients. In: Drug metabolism in diseases. Amsterdam: Elsevier Inc.; 2017. p. 181–206.
Wanders RJ, Ruiter JP, Ijlst L, Waterham HR, Houten SM. The enzymology of mitochondrial fatty acid beta-oxidation and its application to follow-up analysis of positive neonatal screening results. J Inherit Metab Dis. 2010;33(5):479–94.
Article CAS PubMed PubMed Central Google Scholar
Sethi PK, White CA, Cummings BS, Hines RN, Muralidhara S, Bruckner JV. Ontogeny of plasma proteins, albumin and binding of diazepam, cyclosporine, and deltamethrin. Pediatr Res. 2016;79(3):409–15.
Article CAS PubMed Google Scholar
Bialer M, Rubinstein A, Dubrovsky J, Raz I, Abramsky O. A comparative pharmacokinetic study of valpromide and valproic acid after intravenous administration in humans. Int J Pharm. 1985;23:25–33.
留言 (0)