Sikma MA, van Maarseveen EM, van de Graaf EA, Kirkels JH, Verhaar MC, Donker DW, et al. Pharmacokinetics and toxicity of tacrolimus early after heart and lung transplantation. Am J Transplant. 2015;15:2301–13. https://doi.org/10.1111/ajt.13309.
Article CAS PubMed Google Scholar
Brunet M, van Gelder T, Åsberg A, Haufroid V, Hesselink DA, Langman L, et al. Therapeutic drug monitoring of tacrolimus-personalized therapy: second consensus report. Ther Drug Monitor. 2019;41:261–307. https://doi.org/10.1097/FTD.0000000000000640.
Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of tacrolimus in solid organ transplantation. Clin Pharmacokinet. 2004;43:623–53. https://doi.org/10.2165/00003088-200443100-00001.
Article CAS PubMed Google Scholar
Vanlerberghe BTK, van Malenstein H, Sainz-Barriga M, Jochmans I, Cassiman D, Monbaliu D, et al. Tacrolimus drug exposure level and smoking are modifiable risk factors for early de novo malignancy after liver transplantation for alcohol-related liver disease. Transpl Int. 2024;37:12055. https://doi.org/10.3389/ti.2024.12055.
Article CAS PubMed PubMed Central Google Scholar
Degraeve AL, Moudio S, Haufroid V, Chaib Eddour D, Mourad M, Bindels LB, et al. Predictors of tacrolimus pharmacokinetic variability: current evidences and future perspectives. Expert Opin Drug Metabol Toxicol. 2020;16:769–82. https://doi.org/10.1080/17425255.2020.1803277.
Holford NHG, Buclin T. Safe and effective variability: a criterion for dose individualization. Ther Drug Monit. 2012;34:565–8. https://doi.org/10.1097/FTD.0b013e31826aabc3.
Article CAS PubMed Google Scholar
Størset E, Holford N, Hennig S, Bergmann TK, Bergan S, Bremer S, et al. Improved prediction of tacrolimus concentrations early after kidney transplantation using theory-based pharmacokinetic modelling. Br J Clin Pharm. 2014;78:509–23. https://doi.org/10.1111/bcp.12361.
Lloberas N, Grinyó JM, Colom H, Vidal-Alabró A, Fontova P, Rigo R, et al. A prospective controlled, randomized clinical trial of kidney transplant recipients developed personalized tacrolimus dosing using model-based Bayesian prediction. Kidney Int. 2023;104:840–50. https://doi.org/10.1016/j.kint.2023.06.021.
Article CAS PubMed Google Scholar
Shi B, Liu Y, Liu D, Yuan L, Guo W, Wen P, et al. Peng, Genotype-guided model significantly improves accuracy of tacrolimus initial dosing after liver transplantation. ClinicalMedicine. 2023;55: 101752. https://doi.org/10.1016/j.eclinm.2022.101752.
Khong J, Lee M, Warren C, Kim UB, Duarte S, Andreoni KA, et al. Personalized tacrolimus dosing after liver transplantation: a randomized clinical trial. MedRxiv. 2023. https://doi.org/10.1101/2023.05.26.23290604.
Article PubMed PubMed Central Google Scholar
Taylor ZL, Poweleit EA, Paice K, Somers KM, Pavia K, Vinks AA, et al. Tutorial on model selection and validation of model input into precision dosing software for model-informed precision dosing. CPT Pharm Syst Pharmacol. 2023;12:1827–45. https://doi.org/10.1002/psp4.13056.
Wickham H. The tidyverse, presentation. 2016. Available from: http://tidyverse.org. [Accessed 27 Aug 2024].
Baron K. mrgsolve: simulate from ODE-based models. 2023. R package version 1.3.0.
Le Louedec F, Puisset F, Thomas F, Chatelut É, White-Koning M. Easy and reliable maximum a posteriori Bayesian estimation of pharmacokinetic parameters with the open-source R package mapbayr. CPT Pharm Syst Pharmacol. 2021;10:1208–20. https://doi.org/10.1002/psp4.12689.
Charlton M, Levitsky J, Aqel B, O’Grady J, Hemibach J, Rinella M, et al. International liver transplantation society consensus statement on immunosuppression in liver transplant recipients. Transplantation. 2018;102:727. https://doi.org/10.1097/TP.0000000000002147.
Andreu F, Colom H, Elens L, van Gelder T, van Schaik RHN, Hesselink DA, et al. A new CYP3A5*3 and CYP3A4*22 cluster influencing tacrolimus target concentrations: a population approach. Clin Pharmacokinet. 2017;56:963–75. https://doi.org/10.1007/s40262-016-0491-3.
Article CAS PubMed Google Scholar
Franken LG, Francke MI, Andrews LM, van Schaik RHN, Li Y, de Wit LEA, et al. A population pharmacokinetic model of whole-blood and intracellular tacrolimus in kidney transplant recipients. Eur J Drug Metab Pharmacokinet. 2022;47:523–35. https://doi.org/10.1007/s13318-022-00767-8.
Article CAS PubMed PubMed Central Google Scholar
Andrews LM, Hesselink DA, van Schaik RHN, van Gelder T, de Fijter JW, Lloberas N, et al. A population pharmacokinetic model to predict the individual starting dose of tacrolimus in adult renal transplant recipients. Br J Clin Pharm. 2019;85:601–15. https://doi.org/10.1111/bcp.13838.
Lu Y, Su Q, Wu K, Ren Y, Li L, Zhou T, et al. A population pharmacokinetic study of tacrolimus in healthy Chinese volunteers and liver transplant patients. Acta Pharmacol Sin. 2015;36:281–8. https://doi.org/10.1038/aps.2014.110.
Article CAS PubMed Google Scholar
Kirubakaran R, Uster DW, Hennig S, Carland JE, Day RO, Wicha SG, et al. Adaptation of a population pharmacokinetic model to inform tacrolimus therapy in heart transplant recipient. Br J Clin Pharm. 2023;89:1162–75. https://doi.org/10.1111/bcp.15566.
Alqahtani S, Alenazi M, Alsultan A, Alsarhani E. Estimation of tacrolimus clearance in Saudi Adult kidney transplant recipients. Saudi J Kidney Dis Transplant. 2021;32:101. https://doi.org/10.4103/1319-2442.318511.
Al-Kofahi M, Oetting WS, Schladt DP, Remmel RP, Guan W, Wu B, et al. Precision dosing for tacrolimus using genotypes and clinical factors in kidney transplant recipients of European ancestry. J Clin Pharmacol. 2021;61:1035–44. https://doi.org/10.1002/jcph.1823.
Article CAS PubMed PubMed Central Google Scholar
Francke MI, Visser WJ, Severs D, de Mik van Egmond AME, Hesselink DA, De Winter BCN. Body composition is associated with tacrolimus pharmacokinetics in kidney transplant recipients. Eur J Clin Pharmacol. 2022;78:1273–87. https://doi.org/10.1007/s00228-022-03323-0.
Ji E, Kim MG, Oh JM. CYP3A5 genotype-based model to predict tacrolimus dosage in the early postoperative period after living donor liver transplantation. TCRM. 2018;14:2119–26. https://doi.org/10.2147/TCRM.S184376.
Andreu F, Colom H, Grinyó JM, Torras J, Cruzado JM, Lloberas N. Development of a population PK model of tacrolimus for adaptive dosage control in stable kidney transplant patients. Ther Drug Monit. 2015;37:246–55. https://doi.org/10.1097/FTD.0000000000000134.
Article CAS PubMed Google Scholar
Quintairos L, Colom H, Millán O, Fortuna V, Espinosa C, Guirado L, et al. Early prognostic performance of miR155-5p monitoring for the risk of rejection: logistic regression with a population pharmacokinetic approach in adult kidney transplant patients. PLoS ONE. 2021;16: e0245880. https://doi.org/10.1371/journal.pone.0245880.
Article CAS PubMed PubMed Central Google Scholar
Zhang S-F, Tang B-H, Wei A, Du Y, Guan Z-W, Li Y. Effect of drug combination on tacrolimus target dose in renal transplant patients with different CYP3A5 genotypes. Xenobiotica. 2022;52:312–21. https://doi.org/10.1080/00498254.2022.2064252.
Article CAS PubMed Google Scholar
Zuo X, Ng CM, Barrett JS, Luo A, Zhang B, Deng C, et al. Effects of CYP3A4 and CYP3A5 polymorphisms on tacrolimus pharmacokinetics in Chinese adult renal transplant recipients: a population pharmacokinetic analysis. Pharmacogenet Genom. 2013;23:251–61. https://doi.org/10.1097/FPC.0b013e32835fcbb6.
Zhu L, Yang J, Zhang Y, Jing Y, Zhang Y, Li G. Effects of CYP3A5 genotypes, ABCB1 C3435T and G2677T/A polymorphism on pharmacokinetics of tacrolimus in Chinese adult liver transplant patients. Xenobiotica. 2015;45:840–6. https://doi.org/10.3109/00498254.2015.1021733.
Article CAS PubMed Google Scholar
Ling J, Dong L-L, Yang Z-P, Qian Q, Jiang Y, Zou S-L, et al. Effects of CYP3A5, ABCB1 and POR*28 polymorphisms on pharmacokinetics of tacrolimus in the early period after renal transplantation. Xenobiotica. 2020;50:1501–9. https://doi.org/10.1080/00498254.2020.1774682.
留言 (0)