Development of STING probes and visualization of STING in multiple tumor types

Ishikawa H, Barber GN. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature. 2008;455:674–8. https://doi.org/10.1038/nature07317.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Sun L, Wu J, Du F, Chen X, Chen ZJ. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science. 2013;339:786–91. https://doi.org/10.1126/science.1232458.

Article  PubMed  CAS  Google Scholar 

Wu J, Sun L, Chen X, Du F, Shi H, Chen C, et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science. 2013;339:826–30. https://doi.org/10.1126/science.1229963.

Article  PubMed  CAS  Google Scholar 

Shae D, Becker KW, Christov P, Yun DS, Lytton-Jean AKR, Sevimli S, et al. Endosomolytic polymersomes increase the activity of cyclic dinucleotide STING agonists to enhance cancer immunotherapy. Nat Nanotechnol. 2019;14:269–78. https://doi.org/10.1038/s41565-018-0342-5.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dane EL, Belessiotis-Richards A, Backlund C, Wang J, Hidaka K, Milling LE, et al. STING agonist delivery by tumour-penetrating PEG-lipid nanodiscs primes robust anticancer immunity. Nat Mater. 2022;21:710–20. https://doi.org/10.1038/s41563-022-01251-z.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Motedayen Aval L, Pease JE, Sharma R, Pinato DJ. Challenges and opportunities in the Clinical Development of STING agonists for Cancer Immunotherapy. J Clin Med. 2020;9:3323. https://doi.org/10.3390/jcm9103323.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Le Naour J, Zitvogel L, Galluzzi L, Vacchelli E, Kroemer G. Trial watch: STING agonists in cancer therapy. Oncoimmunology. 2020;9:1777624. https://doi.org/10.1080/2162402x.2020.1777624.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wang Y, Luo J, Alu A, Han X, Wei Y, Wei X. cGAS-STING pathway in cancer biotherapy. Mol Cancer. 2020;19:136. https://doi.org/10.1186/s12943-020-01247-w.

Article  PubMed  PubMed Central  CAS  Google Scholar 

An X, Zhu Y, Zheng T, Wang G, Zhang M, Li J, et al. An analysis of the Expression and Association with Immune Cell Infiltration of the cGAS/STING pathway in Pan-cancer. Mol Ther Nucleic Acids. 2019;14:80–9. https://doi.org/10.1016/j.omtn.2018.11.003.

Article  PubMed  CAS  Google Scholar 

Song S, Peng P, Tang Z, Zhao J, Wu W, Li H, et al. Decreased expression of STING predicts poor prognosis in patients with gastric cancer. Sci Rep. 2017;7:39858. https://doi.org/10.1038/srep39858.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Yuan C, Wang X, Liu Z, Li C, Bian M, Shan J, et al. Preoperative tumor biopsy results in more detected sentinel nodes than intraoperative biopsy in breast cancer patients. World J Surg Oncol. 2020;18:178. https://doi.org/10.1186/s12957-020-01942-4.

Article  PubMed  PubMed Central  Google Scholar 

Pesapane F, Suter MB, Rotili A, Penco S, Nigro O, Cremonesi M, et al. Will traditional biopsy be substituted by radiomics and liquid biopsy for breast cancer diagnosis and characterisation? Med Oncol. 2020;37:29. https://doi.org/10.1007/s12032-020-01353-1.

Article  PubMed  Google Scholar 

Mason CA, Kossatz S, Carter LM, Pirovano G, Brand C, Guru N, et al. An (89)Zr-HDL PET Tracer Monitors response to a CSF1R inhibitor. J Nucl Med. 2020;61:433–6. https://doi.org/10.2967/jnumed.119.230466.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Shu CJ, Guo S, Kim YJ, Shelly SM, Nijagal A, Ray P, et al. Visualization of a primary anti-tumor immune response by positron emission tomography. Proc Natl Acad Sci U S A. 2005;102:17412–7. https://doi.org/10.1073/pnas.0508698102.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Pisaneschi F, Gammon ST, Paolillo V, Qureshy SA, Piwnica-Worms D. Imaging of innate immunity activation in vivo with a redox-tuned PET reporter. Nat Biotechnol. 2022;40:965–73. https://doi.org/10.1038/s41587-021-01169-y.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ramanjulu JM, Pesiridis GS, Yang J, Concha N, Singhaus R, Zhang SY, et al. Design of amidobenzimidazole STING receptor agonists with systemic activity. Nature. 2018;564:439–43. https://doi.org/10.1038/s41586-018-0705-y.

Article  PubMed  CAS  Google Scholar 

Fang J, Zhang J, Meng L, Li H, Xia D, Wang Y, et al. 18F-Labeled Amidobenzimidazole Analogue for visualizing STING expression in Tumor. Mol Pharm. 2024;21:1942–51. https://doi.org/10.1021/acs.molpharmaceut.3c01201.

Article  PubMed  CAS  Google Scholar 

Fang J, Feng L, Meng L, Wang X, Liu H, Huang L, et al. A novel 18F-labeled agonist for PET imaging of stimulator of interferon gene expression in tumor-bearing mice. Eur J Nucl Med Mol Imaging. 2022;50:27–37. https://doi.org/10.1007/s00259-022-05959-7.

Article  PubMed  CAS  Google Scholar 

Pan BS, Perera SA, Piesvaux JA, Presland JP, Schroeder GK, Cumming JN, et al. An orally available non-nucleotide STING agonist with antitumor activity. Science. 2020;369:eaba6098. https://doi.org/10.1126/science.aba6098.

Article  PubMed  CAS  Google Scholar 

Xu D, Yang F, Chen J, Zhu T, Wang F, Xiao Y, et al. Novel STING-targeted PET radiotracer for alert and therapeutic evaluation of acute lung injury. Acta Pharm Sin B. 2023;13:2124–37. https://doi.org/10.1016/j.apsb.2022.12.017.

Article  PubMed  CAS  Google Scholar 

Xu D, Lu X, Yang F, Jiang Z, Yang S, Bi L, et al. STING-targeted PET tracer for early assessment of tumor immunogenicity in colorectal cancer after chemotherapy. Eur J Nucl Med Mol Imaging. 2023;51:641–55. https://doi.org/10.1007/s00259-023-06485-w.

Article  PubMed  CAS  Google Scholar 

Fang J, Wang X, Meng L, Zhang J, Zhuang R, Li Y, et al. Preclinical evaluation of 131I/18F-Labeled covalent small-molecule inhibitors for STING Status Imaging. ACS Pharmacol Translational Sci. 2024;7:1783–94. https://doi.org/10.1021/acsptsci.3c00398.

Article  CAS  Google Scholar 

Liu H, Sun Y, Li J, Chen Y, Liu J, Fang J, et al. Development of 18F-Labeled Acridone Analogue for Tumor Imaging via Stimulator of Interferon genes targeting. Mol Pharm. 2023;20:3529–38. https://doi.org/10.1021/acs.molpharmaceut.3c00137.

Article  PubMed  CAS  Google Scholar 

Lee W, Bobba KN, Kim JY, Park H, Bhise A, Kim W, et al. A short PEG linker alters the in vivo pharmacokinetics of trastuzumab to yield high-contrast immuno-PET images. J Mater Chem B. 2021;9:2993–7. https://doi.org/10.1039/d0tb02911d.

Article  PubMed  CAS  Google Scholar 

Wu X, You L, Zhang D, Gao M, Li Z, Xu D, et al. Synthesis and preliminary evaluation of a 18F-labeled ethisterone derivative [18F]EAEF for progesterone receptor targeting. Chem Biol Drug Des. 2017;89:559–65. https://doi.org/10.1111/cbdd.12878.

Article  PubMed  CAS  Google Scholar 

Gao F, Peng C, Zhuang R, Guo Z, Liu H, Huang L, et al. 18F-Labeled ethisterone derivative for progesterone receptor targeted PET imaging of breast cancer. Nucl Med Biol. 2019;72–3. https://doi.org/10.1016/j.nucmedbio.2019.07.001.

Hou S, Lan XJ, Li W, Yan XL, Chang JJ, Yang XH, et al. Design, synthesis and biological evaluation of acridone analogues as novel STING receptor agonists. Bioorg Chem. 2020;95:103556. https://doi.org/10.1016/j.bioorg.2019.103556.

Article 

留言 (0)

沒有登入
gif