Irisin Ameliorates Muscle Atrophy by Inhibiting the Upregulation of the Ubiquitin‒Proteasome System in Chronic Kidney Disease

Cheng TC, Huang SH, Kao CL, Hsu PC (2022) Muscle wasting in chronic kidney disease: mechanism and clinical implications-a narrative review. Int J Mol Sci 23:6047. https://doi.org/10.3390/ijms23116047

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chatzipetrou V, Bégin MJ, Hars M, Trombetti A (2022) Sarcopenia in chronic kidney disease: a scoping review of prevalence, risk factors, association with outcomes, and treatment. Calcif Tissue Int 110:1–31. https://doi.org/10.1007/s00223-021-00898-1

Article  PubMed  CAS  Google Scholar 

Hanna RM, Ghobry L, Wassef O, Rhee CM, Kalantar-Zadeh K (2020) A practical approach to nutrition, protein-energy wasting, sarcopenia, and cachexia in patients with chronic kidney disease. Blood Purif 49:202–211. https://doi.org/10.1159/000504240

Article  PubMed  CAS  Google Scholar 

Yoshida T, Delafontaine P (2020) Mechanisms of igf-1-mediated regulation of skeletal muscle hypertrophy and atrophy. Cells 9:1970. https://doi.org/10.3390/cells9091970

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wang XH, Mitch WE, Price SR (2022) Pathophysiological mechanisms leading to muscle loss in chronic kidney disease. Nat Rev Nephrol 18:138–152. https://doi.org/10.1038/s41581-021-00498-0

Article  PubMed  CAS  Google Scholar 

Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA et al (2012) A pgc1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481:463–468. https://doi.org/10.1038/nature10777

Article  PubMed  PubMed Central  CAS  Google Scholar 

Waseem R, Shamsi A, Mohammad T, Hassan MI, Kazim SN, Chaudhary AA, Rudayni HA et al (2022) Fndc5/irisin: physiology and pathophysiology. Molecules 27:1118. https://doi.org/10.3390/molecules27031118

Article  PubMed  PubMed Central  CAS  Google Scholar 

Fu J, Han Y, Wang J, Liu Y, Zheng S, Zhou L, Jose PA et al (2016) Irisin lowers blood pressure by improvement of endothelial dysfunction via ampk-akt-enos-no pathway in the spontaneously hypertensive rat. J Am Heart Assoc 5:e003433. https://doi.org/10.1161/jaha.116.003433

Article  PubMed  PubMed Central  CAS  Google Scholar 

Reza MM, Subramaniyam N, Sim CM, Ge X, Sathiakumar D, McFarlane C, Sharma M et al (2017) Irisin is a pro-myogenic factor that induces skeletal muscle hypertrophy and rescues denervation-induced atrophy. Nat Commun 8:1104. https://doi.org/10.1038/s41467-017-01131-0

Article  PubMed  PubMed Central  CAS  Google Scholar 

Colaianni G, Mongelli T, Cuscito C, Pignataro P, Lippo L, Spiro G, Notarnicola A et al (2017) Irisin prevents and restores bone loss and muscle atrophy in hind-limb suspended mice. Sci Rep 7:2811. https://doi.org/10.1038/s41598-017-02557-8

Article  PubMed  PubMed Central  CAS  Google Scholar 

Robinson KA, Baker LA, Graham-Brown MPM, Watson EL (2020) Skeletal muscle wasting in chronic kidney disease: the emerging role of micrornas. Nephrol Dial Transpl 35:1469–1478. https://doi.org/10.1093/ndt/gfz193

Article  CAS  Google Scholar 

Rom O, Reznick AZ (2016) The role of e3 ubiquitin-ligases murf-1 and mafbx in loss of skeletal muscle mass. Free Radic Biol Med 98:218–230. https://doi.org/10.1016/j.freeradbiomed.2015.12.031

Article  PubMed  CAS  Google Scholar 

Liu L, Hu R, You H, Li J, Liu Y, Li Q, Wu X et al (2021) Formononetin ameliorates muscle atrophy by regulating myostatin-mediated pi3k/akt/foxo3a pathway and satellite cell function in chronic kidney disease. J Cell Mol Med 25:1493–1506. https://doi.org/10.1111/jcmm.16238

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bodine SC, Baehr LM (2014) Skeletal muscle atrophy and the e3 ubiquitin ligases murf1 and mafbx/atrogin-1. Am J Physiol Endocrinol Metab 307:E469-484. https://doi.org/10.1152/ajpendo.00204.2014

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chen K, Gao P, Li Z, Dai A, Yang M, Chen S, Su J et al (2022) Forkhead box o signaling pathway in skeletal muscle atrophy. Am J Pathol 192:1648–1657. https://doi.org/10.1016/j.ajpath.2022.09.003

Article  PubMed  CAS  Google Scholar 

Changchien CY, Lin YH, Cheng YC, Chang HH, Peng YS, Chen Y (2019) Indoxyl sulfate induces myotube atrophy by ros-erk and jnk-mafbx cascades. Chem Biol Interact 304:43–51. https://doi.org/10.1016/j.cbi.2019.02.023

Article  PubMed  CAS  Google Scholar 

Vaudry H, Do Rego JC, Le Mevel JC, Chatenet D, Tostivint H, Fournier A, Tonon MC et al (2010) Urotensin ii, from fish to human. Ann NY Acad Sci 1200:53–66. https://doi.org/10.1111/j.1749-6632.2010.05514.x

Article  PubMed  CAS  Google Scholar 

Eyre HJ, Speight T, Glazier JD, Smith DM, Ashton N (2019) Urotensin ii in the development and progression of chronic kidney disease following 5/6 nephrectomy in the rat. Exp Physiol 104:421–433. https://doi.org/10.1113/ep087366

Article  PubMed  CAS  Google Scholar 

Pan YJ, Zhou SJ, Feng J, Bai Q, A L T, Zhang A H, (2019) Urotensin ii induces mice skeletal muscle atrophy associated with enhanced autophagy and inhibited irisin precursor (fibronectin type iii domain containing 5) expression in chronic renal failure. Kidney Blood Press Res 44:479–495. https://doi.org/10.1159/000499880

Article  PubMed  CAS  Google Scholar 

Hursitoglu M, Tukek T, Cikrikcioglu MA, Kara O, Kazancioglu R, Ozkan O, Cakirca M et al (2012) Urotensin ii levels in patients with chronic kidney disease and kidney transplants. Ups J Med Sci 117:22–27. https://doi.org/10.3109/03009734.2011.626541

Article  PubMed  PubMed Central  Google Scholar 

He WY, Wu F, Pang XX, Chen GJ, A L T, He L, Wang S, et al (2016) Irisin is associated with urotensin ii and protein energy wasting in hemodialysis patients. Kidney Blood Press Res 41:78–85. https://doi.org/10.1159/000443412

Article  PubMed  CAS  Google Scholar 

Pan Y, Zhou T, Dong X, Wu L, Wang P, Wang S, Zhang A (2023) Urotensin ii can induce skeletal muscle atrophy associated with upregulating ubiquitin-proteasome system and inhibiting the differentiation of satellite cells in crf mice. Calcif Tissue Int 112:603–612. https://doi.org/10.1007/s00223-023-01073-4

Article  PubMed  CAS  Google Scholar 

Kim K, Anderson EM, Thome T, Lu G, Salyers ZR, Cort TA, O’Malley KA et al (2021) Skeletal myopathy in ckd: a comparison of adenine-induced nephropathy and 5/6 nephrectomy models in mice. Am J Physiol Renal Physiol 321:F106-f119. https://doi.org/10.1152/ajprenal.00117.2021

Article  PubMed  PubMed Central  CAS  Google Scholar 

Li X, Lindholm B (2024) The role of irisin in kidney diseases. Clin Chim Acta 554:117756. https://doi.org/10.1016/j.cca.2023.117756

Article  PubMed  CAS  Google Scholar 

Liu S, Cui F, Ning K, Wang Z, Fu P, Wang D, Xu H (2022) Role of irisin in physiology and pathology. Front Endocrinol (Lausanne) 13:962968. https://doi.org/10.3389/fendo.2022.962968

Article  PubMed  Google Scholar 

He WY, Bai Q, A L T, Tang C S, Zhang A H, (2015) Irisin levels are associated with urotensin ii levels in diabetic patients. J Diabetes Investig 6:571–576. https://doi.org/10.1111/jdi.12331

Article  PubMed  PubMed Central  CAS 

留言 (0)

沒有登入
gif