Cheng TC, Huang SH, Kao CL, Hsu PC (2022) Muscle wasting in chronic kidney disease: mechanism and clinical implications-a narrative review. Int J Mol Sci 23:6047. https://doi.org/10.3390/ijms23116047
Article PubMed PubMed Central CAS Google Scholar
Chatzipetrou V, Bégin MJ, Hars M, Trombetti A (2022) Sarcopenia in chronic kidney disease: a scoping review of prevalence, risk factors, association with outcomes, and treatment. Calcif Tissue Int 110:1–31. https://doi.org/10.1007/s00223-021-00898-1
Article PubMed CAS Google Scholar
Hanna RM, Ghobry L, Wassef O, Rhee CM, Kalantar-Zadeh K (2020) A practical approach to nutrition, protein-energy wasting, sarcopenia, and cachexia in patients with chronic kidney disease. Blood Purif 49:202–211. https://doi.org/10.1159/000504240
Article PubMed CAS Google Scholar
Yoshida T, Delafontaine P (2020) Mechanisms of igf-1-mediated regulation of skeletal muscle hypertrophy and atrophy. Cells 9:1970. https://doi.org/10.3390/cells9091970
Article PubMed PubMed Central CAS Google Scholar
Wang XH, Mitch WE, Price SR (2022) Pathophysiological mechanisms leading to muscle loss in chronic kidney disease. Nat Rev Nephrol 18:138–152. https://doi.org/10.1038/s41581-021-00498-0
Article PubMed CAS Google Scholar
Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA et al (2012) A pgc1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481:463–468. https://doi.org/10.1038/nature10777
Article PubMed PubMed Central CAS Google Scholar
Waseem R, Shamsi A, Mohammad T, Hassan MI, Kazim SN, Chaudhary AA, Rudayni HA et al (2022) Fndc5/irisin: physiology and pathophysiology. Molecules 27:1118. https://doi.org/10.3390/molecules27031118
Article PubMed PubMed Central CAS Google Scholar
Fu J, Han Y, Wang J, Liu Y, Zheng S, Zhou L, Jose PA et al (2016) Irisin lowers blood pressure by improvement of endothelial dysfunction via ampk-akt-enos-no pathway in the spontaneously hypertensive rat. J Am Heart Assoc 5:e003433. https://doi.org/10.1161/jaha.116.003433
Article PubMed PubMed Central CAS Google Scholar
Reza MM, Subramaniyam N, Sim CM, Ge X, Sathiakumar D, McFarlane C, Sharma M et al (2017) Irisin is a pro-myogenic factor that induces skeletal muscle hypertrophy and rescues denervation-induced atrophy. Nat Commun 8:1104. https://doi.org/10.1038/s41467-017-01131-0
Article PubMed PubMed Central CAS Google Scholar
Colaianni G, Mongelli T, Cuscito C, Pignataro P, Lippo L, Spiro G, Notarnicola A et al (2017) Irisin prevents and restores bone loss and muscle atrophy in hind-limb suspended mice. Sci Rep 7:2811. https://doi.org/10.1038/s41598-017-02557-8
Article PubMed PubMed Central CAS Google Scholar
Robinson KA, Baker LA, Graham-Brown MPM, Watson EL (2020) Skeletal muscle wasting in chronic kidney disease: the emerging role of micrornas. Nephrol Dial Transpl 35:1469–1478. https://doi.org/10.1093/ndt/gfz193
Rom O, Reznick AZ (2016) The role of e3 ubiquitin-ligases murf-1 and mafbx in loss of skeletal muscle mass. Free Radic Biol Med 98:218–230. https://doi.org/10.1016/j.freeradbiomed.2015.12.031
Article PubMed CAS Google Scholar
Liu L, Hu R, You H, Li J, Liu Y, Li Q, Wu X et al (2021) Formononetin ameliorates muscle atrophy by regulating myostatin-mediated pi3k/akt/foxo3a pathway and satellite cell function in chronic kidney disease. J Cell Mol Med 25:1493–1506. https://doi.org/10.1111/jcmm.16238
Article PubMed PubMed Central CAS Google Scholar
Bodine SC, Baehr LM (2014) Skeletal muscle atrophy and the e3 ubiquitin ligases murf1 and mafbx/atrogin-1. Am J Physiol Endocrinol Metab 307:E469-484. https://doi.org/10.1152/ajpendo.00204.2014
Article PubMed PubMed Central CAS Google Scholar
Chen K, Gao P, Li Z, Dai A, Yang M, Chen S, Su J et al (2022) Forkhead box o signaling pathway in skeletal muscle atrophy. Am J Pathol 192:1648–1657. https://doi.org/10.1016/j.ajpath.2022.09.003
Article PubMed CAS Google Scholar
Changchien CY, Lin YH, Cheng YC, Chang HH, Peng YS, Chen Y (2019) Indoxyl sulfate induces myotube atrophy by ros-erk and jnk-mafbx cascades. Chem Biol Interact 304:43–51. https://doi.org/10.1016/j.cbi.2019.02.023
Article PubMed CAS Google Scholar
Vaudry H, Do Rego JC, Le Mevel JC, Chatenet D, Tostivint H, Fournier A, Tonon MC et al (2010) Urotensin ii, from fish to human. Ann NY Acad Sci 1200:53–66. https://doi.org/10.1111/j.1749-6632.2010.05514.x
Article PubMed CAS Google Scholar
Eyre HJ, Speight T, Glazier JD, Smith DM, Ashton N (2019) Urotensin ii in the development and progression of chronic kidney disease following 5/6 nephrectomy in the rat. Exp Physiol 104:421–433. https://doi.org/10.1113/ep087366
Article PubMed CAS Google Scholar
Pan YJ, Zhou SJ, Feng J, Bai Q, A L T, Zhang A H, (2019) Urotensin ii induces mice skeletal muscle atrophy associated with enhanced autophagy and inhibited irisin precursor (fibronectin type iii domain containing 5) expression in chronic renal failure. Kidney Blood Press Res 44:479–495. https://doi.org/10.1159/000499880
Article PubMed CAS Google Scholar
Hursitoglu M, Tukek T, Cikrikcioglu MA, Kara O, Kazancioglu R, Ozkan O, Cakirca M et al (2012) Urotensin ii levels in patients with chronic kidney disease and kidney transplants. Ups J Med Sci 117:22–27. https://doi.org/10.3109/03009734.2011.626541
Article PubMed PubMed Central Google Scholar
He WY, Wu F, Pang XX, Chen GJ, A L T, He L, Wang S, et al (2016) Irisin is associated with urotensin ii and protein energy wasting in hemodialysis patients. Kidney Blood Press Res 41:78–85. https://doi.org/10.1159/000443412
Article PubMed CAS Google Scholar
Pan Y, Zhou T, Dong X, Wu L, Wang P, Wang S, Zhang A (2023) Urotensin ii can induce skeletal muscle atrophy associated with upregulating ubiquitin-proteasome system and inhibiting the differentiation of satellite cells in crf mice. Calcif Tissue Int 112:603–612. https://doi.org/10.1007/s00223-023-01073-4
Article PubMed CAS Google Scholar
Kim K, Anderson EM, Thome T, Lu G, Salyers ZR, Cort TA, O’Malley KA et al (2021) Skeletal myopathy in ckd: a comparison of adenine-induced nephropathy and 5/6 nephrectomy models in mice. Am J Physiol Renal Physiol 321:F106-f119. https://doi.org/10.1152/ajprenal.00117.2021
Article PubMed PubMed Central CAS Google Scholar
Li X, Lindholm B (2024) The role of irisin in kidney diseases. Clin Chim Acta 554:117756. https://doi.org/10.1016/j.cca.2023.117756
Article PubMed CAS Google Scholar
Liu S, Cui F, Ning K, Wang Z, Fu P, Wang D, Xu H (2022) Role of irisin in physiology and pathology. Front Endocrinol (Lausanne) 13:962968. https://doi.org/10.3389/fendo.2022.962968
He WY, Bai Q, A L T, Tang C S, Zhang A H, (2015) Irisin levels are associated with urotensin ii levels in diabetic patients. J Diabetes Investig 6:571–576. https://doi.org/10.1111/jdi.12331
留言 (0)