Active pharmaceutical contaminants in drinking water: myth or fact?

Reinacher L. The Water Crisis in Sub-Saharan Africa - The Borgen Project. 2013. Available at: https://borgenproject.org/the-water-crisis-in-sub-saharan-africa/. Accessed 15 Oct 2022.

UNDESA. International Decade for Action ‘Water for Life’ 2005–2015. 2014. Available at: https://www.un.org/waterforlifedecade/africa.shtml. Accessed 15 Oct 2022.

Seetal A, Mathye M, Godfrey L. Decoupling South Africa’s development from water demand through a circular economy. The Circular Economy as Development Opportunity; 2021. p. 61.

Kalebaila N, Ncube EJ, Swartz CD, Marais S, Lubbe J. Strengthening the implementation of water reuse in South Africa. 2021.

Atta KPT, Maree JP, Onyango MS, Mpenyana-Monyatsi L, Mujuru M. Chemical phosphate removal from hartbeespoort dam water. South Africa Water SA. 2020;46(4):610–4.

CAS  Google Scholar 

DBSA. How water reuse can save SA’s looming water deficit. 2022. Available at: https://www.dbsa.org/article/how-water-reuse-can-save-south-africas-looming-water-deficit. Accessed 13 Oct 2022.

US EPA. Contaminants of Emerging Concern including Pharmaceuticals and Personal Care Products|. 2022. Available at: https://www.epa.gov/wqc/contaminants-emerging-concern-including-pharmaceuticals-and-personal-care-products. Accessed 13 Oct 2022.

Madikizela LM, Tavengwa NT, Chimuka L. Status of pharmaceuticals in African water bodies: Occurrence, removal and analytical methods. J Environ Manage. 2017;193:211–20. https://doi.org/10.1016/J.JENVMAN.2017.02.022.

Article  PubMed  CAS  Google Scholar 

Code of Federal Regulations. eCFR :: Appendix A to Part 439, Title 40 – Tables. 2022. Available at: https://www.ecfr.gov/current/title-40/chapter-I/subchapter-N/part-439/appendix-Appendix A to Part 439. Accessed 22 Sept 2022.

Guo Y, Qi PS, Liu YZ. A Review on Advanced Treatment of Pharmaceutical Wastewater. In: 2017 International Conference on Environmental and Energy Engineering (IC3E 2017). 2017;12025. https://doi.org/10.1088/1755-1315/63/1/012025.

Zhang QW, Lin LG, Ye WC. Techniques for extraction and isolation of natural products: A comprehensive review. Chin Med (United Kingdom). 2018;13(1):1–26. https://doi.org/10.1186/S13020-018-0177-X/FIGURES/13.

Article  Google Scholar 

Osunmakinde CS, Tshabalala OS, Dube S, Nindi MM. Verification and validation of analytical methods for testing the levels of PPHCPs (Pharmaceutical & Personal Health Care Products) in treated drinking water and sewage: report to the Water Research Commission. Pretoria, South Africa: Water Research Commission. 2013.

US EPA. How Wastewater Treatment Works... The Basics. 1998.

OECD. Pharmaceutical Residues in Freshwater: Hazards and Policy Responses, OECD Studies on Water. Paris: OECD Publishing; 2019.

Book  Google Scholar 

Waleng NJ, Nomngongo PN. Occurrence of pharmaceuticals in the environmental waters: African and Asian perspectives. Environ Chem Ecotoxicol. 2022;4:50–66. https://doi.org/10.1016/J.ENCECO.2021.11.002.

Article  CAS  Google Scholar 

Patel M, Kumar R, Kishor K, Mlsna T, Pittman CU Jr, Mohan D. Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods. Chem Rev. 2019;119(6):3510–673. https://doi.org/10.1021/ACS.CHEMREV.8B00299/ASSET/IMAGES/LARGE/CR-2018-00299Y_0035.JPEG.

Article  PubMed  CAS  Google Scholar 

Cincinelli A, Martellini T, Coppini E, Fibbi D, Katsoyiannis A. Nanotechnologies for removal of pharmaceuticals and personal care products from water and wastewater. A review. J Nanosci Nanotechnol. 2015;15(5):3333–47. https://doi.org/10.1166/jnn.2015.10036.

Article  PubMed  CAS  Google Scholar 

Verlicchi P, Al Aukidy M, Zambello E. Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment—a review. Sci Total Environ. 2012;429:123–55.

Article  PubMed  CAS  Google Scholar 

Fernandez-Fontaina E, Omil F, Lema JM, Carballa M. Influence of nitrifying conditions on the biodegradation and sorption of emerging micropollutants. Water Res. 2012;46(16):5434–44.

Article  PubMed  CAS  Google Scholar 

Jelic A, Gros M, Ginebreda A, Cespedes-Sánchez R, Ventura F, Petrovic M, Barcelo D. Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Res. 2011;45(3):1165–76.

Article  PubMed  CAS  Google Scholar 

Joss A, Zabczynski S, Göbel A, et al. Biological degradation of pharmaceuticals in municipal wastewater treatment: Proposing a classification scheme. Water Res. 2006;40(8):1686–96.

Article  PubMed  CAS  Google Scholar 

Ternes TA, Joss A, Siegrist H. Peer reviewed: scrutinizing pharmaceuticals and personal care products in wastewater treatment. Environ Sci Technol. 2004;38(20):392A-399A.

Article  PubMed  CAS  Google Scholar 

Carballa M, Omil F, Lema JM, et al. Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Res. 2004;38(12):2918–26.

Article  PubMed  CAS  Google Scholar 

Snyder SA, Westerhoff P, Yoon Y, Sedlak DL. Pharmaceuticals, personal care products, and endocrine disruptors in water: Implications for the water industry. Environ Eng Sci. 2007;20(5):449–69.

Article  Google Scholar 

Hollender J, Zimmermann SG, Koepke S, et al. Elimination of organic micropollutants in a municipal wastewater treatment plant upgraded with a full-scale post-ozonation followed by sand filtration. Environ Sci Technol. 2009;43(20):7862–9.

Article  PubMed  CAS  Google Scholar 

Reungoat J, Escher BI, Macova M, et al. Removal of micropollutants and reduction of biological activity in a full scale reclamation plant using ozonation and activated carbon filtration. Water Res. 2011;45(9):2611–2.

Google Scholar 

Ternes TA, Stüber J, Herrmann N, McDowell D, Ried A, Kampmann M, Teiser B. Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater? Water Res. 2003;37(8):1976–82.

Article  PubMed  CAS  Google Scholar 

Abedzadeh N, Samaei MR, Shahangian H. Ultrasound-assisted advanced oxidation processes for the removal of pharmaceutical compounds from aqueous environments: A review. Environ Technol Innov. 2020;20:101158.

Google Scholar 

Li J, Jiang P, Zhu L, Tang Y. Effects of ultrasound and ozonation pretreatment on the degradation of ibuprofen. Chem Eng J. 2016;291:361–70.

Google Scholar 

Oturan MA, Aaron JJ. Advanced oxidation processes in water/wastewater treatment: Principles and applications. A review. Crit Rev Environ Sci Technol. 2014;44(23):2577–641.

Article  CAS  Google Scholar 

Pereira RO, Postigo C, de Alda ML, Daniel LA, Barceló D. Removal of estrogens through water disinfection processes and formation of by-products. Chemosphere. 2011;82(6):789–99.

Article  PubMed  CAS  Google Scholar 

Malato S, Fernández-Ibáñez P, Maldonado MI, Blanco J, Gernjak W. Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catal Today. 2009;147(1):1–59.

Article  CAS  Google Scholar 

Remucal CK. The role of indirect photochemical degradation in the environmental fate of pesticides: a review. Environ Sci Process Impacts. 2014;16(4):628–53.

Article  PubMed  CAS  Google Scholar 

Radjenović J, Petrović M, Barceló D. Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water Res. 2009;43(3):831–41.

Article  PubMed  Google Scholar 

Gerrity D, Snyder S. Review of ozone for water reuse applications: Toxicity, regulations, and trace organic contaminant oxidation. Ozone Sci Eng. 2011;33(4):253–66.

Article  CAS  Google Scholar 

Weigmann K. Swimming in a sea of drugs: Psychiatric drugs in the aquatic environment could have severe adverse effects on wildlife and ecosystems. EMBO Rep. 2017;18(10):1688. https://doi.org/10.15252/EMBR.201745015.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kostich MS, Batt AL, Lazorchak JM. Concentrations of prioritised pharmaceuticals in effluents from 50 large wastewater treatment plants in the US and implications for risk estimation. Environ Pollut. 2014;184:354–9. https://doi.org/10.1016/J.ENVPOL.2013.09.013.

Article  PubMed  CAS  Google Scholar 

Bellino A, et al. Antibiotic effects on seed germination and root development of tomato (Solanum lycopersicum L.). Ecotoxicol Environ Saf. 2018;148:135–41. https://doi.org/10.1016/J.ECOENV.2017.10.006.

Article  PubMed  CAS  Google Scholar 

Timmerer U, et al. Toxic Effects of Single Antibiotics and Antibiotics in Combination on Germination and Growth of Sinapis alba L. Plants. 2020;9(1):107. https://doi.org/10.3390/PLANTS9010107.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Horn S, et al. HIV-antiretrovirals in river water from Gauteng, South Africa: Mixed messages of wastewater inflows as source. Sci Total Environ. 2022;806:150346. https://doi.org/10.1016/J.SCITOTENV.2021.150346.

Article 

留言 (0)

沒有登入
gif