Seibert JA. Flat-panel detectors: how much better are they? Pediatr Radiol. 2006;36(Suppl 2):173–81. https://doi.org/10.1007/s00247-006-0208-0.
Article PubMed PubMed Central Google Scholar
Bloomquist AK, Yaffe MJ, Mawdsley GE, Hunter DM, Beideck DJ. Lag and ghosting in a clinical flat-panel selenium digital mammography system. Med Phys. 2006;33:2998–3005. https://doi.org/10.1118/1.2218315.
Schroeder C, Stanescu T, Rathee S, Fallone BG. Lag measurement in an a-Se active matrix flat-panel imager. Med Phys. 2004;31:1203–9. https://doi.org/10.1118/1.1713298.
Article CAS PubMed Google Scholar
Friedman SN, Cunningham IA. A small-signal approach to temporal modulation transfer functions with exposure-rate dependence and its application to fluoroscopic detective quantum efficiency. Med Phys. 2009;36:3775–85. https://doi.org/10.1118/1.3148668.
Article CAS PubMed Google Scholar
Lee E, Kim DS. Conditional covariances for the signal lag measurements in fluoroscopic imaging. Diagn (Basel). 2021;12:87. https://doi.org/10.3390/diagnostics12010087.
Tanaka R, Ichikawa K, Mori S, et al. Investigation on effect of image lag in fluoroscopic images obtained with a dynamic flat-panel detector (FPD) on accuracy of target tracking in radiotherapy. J Radiat Res. 2010;51:723–31. https://doi.org/10.1269/jrr.10059.
Kawashima H, Tanaka R, Ichikawa K, Matsubara K, Iida H, Sanada S. Investigation of image lag and modulation transfer function in fluoroscopy images obtained with a dynamic flat-panel detector. Radiol Phys Technol. 2013;6:367–74. https://doi.org/10.1007/s12194-013-0210-9.
Menser B, Bastiaens RJM, Nascetti A, Overdick M, Simon M. Linear system models for lag in flat dynamic X-ray detectors. Proc SPIE. 2005;5745:430–41. https://doi.org/10.1117/12.594518.
IEC 62220–1–3. Medical electrical equipment characteristics of digital X-ray imaging devices-part1–3: determination of the detective quantum efficiency detectors used in dynamic imaging. Geneva, Switzerland; 2007
Teramoto A, Kajihara T, Suzuki S, Kinoshita K, Tsuzaka M, Fujita H. Development of quality control system for flat-panel detectors. Radiol Phys Technol. 2011;4:164–72. https://doi.org/10.1007/s12194-011-0117-2.
IEC 62220–1. Medical electrical equipment-characteristics of digital X-ray imaging devices part 1: determination of the detective quantum efficiency, ed. 1.0; 2003
Riederer SJ, Pelc NJ, Chesler DA. The noise power spectrum in computed X-ray tomography. Phys Med Biol. 1978;23:446–54. https://doi.org/10.1088/0031-9155/23/3/008.
Article CAS PubMed Google Scholar
Faulkner K, Moores BM. Analysis of x-ray computed tomography images using the noise power spectrum and autocorrelation function. Phys Med Biol. 1984;29:1343–52. https://doi.org/10.1088/0031-9155/29/11/003.
Article CAS PubMed Google Scholar
Kijewski MF, Judy PF. The noise power spectrum of CT images. Phys Med Biol. 1987;32:565–75. https://doi.org/10.1088/0031-9155/32/5/003.
Article CAS PubMed Google Scholar
Boedeker KL, Cooper VN, McNitt-Gray MF. Application of the noise power spectrum in modern diagnostic MDCT: part I. Measurement of noise power spectra and noise equivalent quanta. Phys Med Biol. 2007;52:4027–46. https://doi.org/10.1088/0031-9155/52/14/002.
Article CAS PubMed Google Scholar
Boedeker KL, McNitt-Gray MF. Application of the noise power spectrum in modern diagnostic MDCT: part II. Noise power spectra and signal to noise. Phys Med Biol. 2007;52:4047–61. https://doi.org/10.1088/0031-9155/52/14/003.
Article CAS PubMed Google Scholar
Vedantham S, Karellas A, Suryanarayanan S, Onishi SK. Solid-state fluoroscopic imager for high-resolution angiography: physical characteristics of an 8 cm x 8-cm experimental prototype. Med Phys. 2004;31:1462–72. https://doi.org/10.1118/1.1750992.
Sato H, Kondo K, Kato K, Nakazawa Y. Evaluation of image lag in a flat-panel, detector-equipped cardiovascular X-ray machine using a newly developed dynamic phantom. J Appl Clin Med Phys. 2015;16:5213. https://doi.org/10.1120/jacmp.v16i2.5213.
留言 (0)