Intraoperative pneumatic tourniquet application reduces soft-tissue microcirculation, but without affecting wound healing in calcaneal fractures

Potter MQ, Nunleys JA. Long-term functional outcomes after operative treatment for intra-articular fractures of the calcaneus. J Bone Joint Surg Am. 2009;91(8):1854–60.

Article  PubMed  Google Scholar 

Mitchell MJ, McKinley JC, Robinsons CM. The epidemiology of calcaneal fractures. Foot. 2009;19(4):197–200.

Article  PubMed  CAS  Google Scholar 

Sangeorzan BJ, Benirschke SK, Carrs JB. Surgical management of fractures of the os calcis. Instr Course Lect. 1995;44:359–70.

PubMed  CAS  Google Scholar 

Buckley R, Tough S, McCormack R, Pate G, Leighton R, Petrie D, Galpins R. Operative compared with nonoperative treatment of displaced intra-articular calcaneal fractures: a prospective, randomized, controlled multicenter trial. J Bone Joint Surg Am. 2002;84(10):1733–44.

Article  PubMed  Google Scholar 

Griffin D, Parsons N, Shaw E, Kulikov Y, Hutchinson C, Thorogood M, Lambs SE. Operative versus non-operative treatment for closed, displaced, intra-articular fractures of the calcaneus: randomised controlled trial. BMJ. 2014;349:g4483.

Article  PubMed  PubMed Central  Google Scholar 

Surgical enhancement of fracture healing – operative vs. nonoperative treatment Bruce, J. and A. Sutherlands (2013) Surgical versus conservative interventions for displaced intra-articular calcaneal fractures. Cochrane Database Syst Rev. (1): p. CD008628.

Li L-H, Guo Y-Z, Wang H, Sang Q-H, Zhang J-Z, Liu Z, Suns T-S. Less wound complications of a sinus tarsi approach compared to an extended lateral approach for the treatment of displaced intraarticular calcaneal fracture: a randomized clinical trial in 64 patients. Medicine. 2016;95(36):e4628.

Article  PubMed  PubMed Central  Google Scholar 

Giachino AA, Uhthoffs HK. Intra-articular fractures of the calcaneus. J Bone Joint Surg Am. 1989;71(5):784–7.

Article  PubMed  CAS  Google Scholar 

Paul M, Peter R, Hoffmeyers P. Fractures of the calcaneum. A review of 70 patients. J Bone Joint Surg Br. 2004;86(8):1142–5.

Article  PubMed  CAS  Google Scholar 

Pastor T, et al. Displaced intra-articular calcaneal fractures: is there a consensus on treatment in Germany? Int Orthop. 2016;40(10):2181–90.

Article  PubMed  Google Scholar 

Sharr PJ, Mangupli MM, Winson IG, Buckleys RE. Current management options for displaced intra-articular calcaneal fractures: non-operative, ORIF, minimally invasive reduction and fixation or primary ORIF and subtalar arthrodesis. A contemporary review. Foot Ankle Surg. 2016;22(1):1–8.

Article  PubMed  CAS  Google Scholar 

Soni A, Vollans S, Malhotra K, Manns C. Association between smoking and wound infection rates following calcaneal fracture fixation. Foot Ankle Spec. 2014;7(4):266–70.

Article  PubMed  Google Scholar 

Benirschke SK, Kramers PA. Wound healing complications in closed and open calcaneal fractures. J Orthop Trauma. 2004;18(1):1–6.

Article  PubMed  Google Scholar 

Sekiya N, Ichiokas S. Efficacy of ultrasonography at the ankle level for estimation of pedal microcirculation. Ann Vasc Dis. 2015;8(3):198–202.

Article  PubMed  PubMed Central  Google Scholar 

Ambrozy E, et al. Healing process of venous ulcers: the role of microcirculation. Int Wound J. 2013;10(1):57–64.

Article  PubMed  Google Scholar 

Knobe M, et al. Reduced pre-operative skin oxygen saturation predicts revision after open reduction and internal fixation in calcaneal fractures: a reduced pre-operative oxygen saturation as measured by laser-Doppler spectrophotometry in 8 mm depth is associated with revision surgery after open reduction and internal fixation of calcaneal fractures through an extended lateral approach. Int Orthop. 2021;45(9):2355–2363. https://doi.org/10.1007/s00264-021-05157-4.

Article  PubMed  Google Scholar 

Eming SA, Wynn TA, Martins P. Inflammation and metabolism in tissue repair and regeneration. Science. 2017;356(6342):1026–30.

Article  PubMed  CAS  Google Scholar 

Bentov I, Reeds MJ. Anesthesia, microcirculation, and wound repair in aging. Anesthesiology. 2014;120(3):760–72.

Article  PubMed  CAS  Google Scholar 

Ljung P, Bornmyr S, Svenssons H. Wound healing after total elbow replacement in rheumatoid arthritis. Wound complications in 50 cases and laser-Doppler imaging of skin microcirculation. Acta Orthop Scand. 1995;66(1):59–63.

Article  PubMed  CAS  Google Scholar 

Soneja A, Drews M, Malinskis T. Role of nitric oxide, nitroxidative and oxidative stress in wound healing. Pharmacol Rep. 2005;57(Suppl):108–19.

PubMed  Google Scholar 

Bosutti A, Egginton S, Barnouin Y, Ganse B, Rittweger J, Degenss H. Local capillary supply in muscle is not determined by local oxidative capacity. J Exp Biol. 2015;218(Pt 21):3377–80.

PubMed  Google Scholar 

Forst T, Hohberg C, Tarakci E, Forst S, Kann P, Pfutzners A. Reliability of lightguide spectrophotometry (O2C) for the investigation of skin tissue microvascular blood flow and tissue oxygen supply in diabetic and nondiabetic subjects. J Diabetes Sci Technol. 2008;2(6):1151–6.

Article  PubMed  PubMed Central  Google Scholar 

Knobloch K, et al. Achilles tendon and paratendon microcirculation in midportion and insertional tendinopathy in athletes. Am J Sports Med. 2006;34(1):92–7.

Article  PubMed  Google Scholar 

Shadgan B, Reid WD, Harris RL, Jafari S, Powers SK, O’Briens PJ. Hemodynamic and oxidative mechanisms of tourniquet-induced muscle injury: near-infrared spectroscopy for the orthopedics setting. J Biomed Opt. 2012;17(8):081408–11.

Article  PubMed  Google Scholar 

Lin L, Li G, Li J, Mengs L. Tourniquet-induced tissue hypoxia characterized by near-infrared spectroscopy during ankle surgery: an observational study. BMC Anesthesiol. 2019;19(1):70.

Article  PubMed  PubMed Central  Google Scholar 

Marsboom G, Rehmans J. Hypoxia signaling in vascular homeostasis. Physiology. 2018;33(5):328–37.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Semenza GL. Vascular responses to hypoxia and ischemia. Arterioscler Thromb Vasc Biol. 2010;30(4):648–52.

Article  PubMed  CAS  Google Scholar 

Bibbo C, Ehrlich DA, Nguyen HML, Levin LS, Kovachs SJ. Low wound complication rates for the lateral extensile approach for calcaneal ORIF when the lateral calcaneal artery is patent. Foot Ankle Int. 2014;35(7):650–6.

Article  PubMed  Google Scholar 

Carow JB, et al. Soft tissue micro-circulation in the healthy hindfoot: a cross-sectional study with focus on lateral surgical approaches to the calcaneus. Int Orthop. 2018;42(11):2705–13.

Article  PubMed  Google Scholar 

Ganse B, et al. Microcirculation after trochanteric femur fractures: a prospective cohort study using non-invasive laser-Doppler spectrophotometry. Front Physiol. 2019;10:236.

Article  PubMed  PubMed Central  Google Scholar 

Koch L, et al. Lower oxygen saturation with higher rates of norepinephrine in bone fractures of polytrauma patients: a pilot study. Crit Care. 2023;27(1):367.

Article  PubMed  PubMed Central  Google Scholar 

Clarke MT, Longstaff L, Edwards D, Rushtons N. Tourniquet-induced wound hypoxia after total knee replacement. J Bone Joint Surg Br. 2001;83(1):40–4.

Article  PubMed  CAS  Google Scholar 

Gidlof A, Lewis DH, Hammersens F. The effect of prolonged total ischemia on the ultrastructure of human skeletal muscle capillaries. A morphometric analysis. Int J Microcirc Clin Exp. 1988;7(1):67–86.

PubMed  CAS  Google Scholar 

Moellhoff N, Gernert C, Frank K, Giunta RE, Ehrls D. The 72-hour microcirculation dynamics in viable free flap reconstructions. J Reconstr Microsurg. 2022.

留言 (0)

沒有登入
gif