Epigenetic tuning of PD-1 expression improves exhausted T cell function and viral control

Zajac, A. J. et al. Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med. 188, 2205–2213 (1998).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wherry, E. J. et al. Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. J. Virol. 77, 4911–4927 (2003).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barber, D. L. et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439, 682–687 (2006).

Article  CAS  PubMed  Google Scholar 

Jin, H.-T. et al. Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection. Proc. Natl Acad. Sci. USA 107, 14733–14738 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wherry, E. J. et al. Molecular signature of CD8 T cell exhaustion during chronic viral infection. Immunity 27, 824 (2007).

Article  CAS  Google Scholar 

Alfei, F. et al. TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection. Nature 571, 265–269 (2019).

Article  CAS  PubMed  Google Scholar 

Khan, O. et al. TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. Nature 571, 211–218 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Scott, A. C. et al. TOX is a critical regulator of tumour-specific T cell differentiation. Nature 571, 270–274 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Im, S. J. et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 537, 417–421 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hudson, W. H. et al. Proliferating transitory T cells with an effector-like transcriptional signature emerge from PD-1+ stem-like CD8+ T cells during chronic infection. Immunity 51, 1043–1058 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zander, R. et al. CD4+ T cell help is required for the formation of a cytolytic CD8+ T cell subset that protects against chronic infection and cancer. Immunity 51, 1028–1042 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Giles, J. R. et al. Shared and distinct biological circuits in effector, memory and exhausted CD8+ T cells revealed by temporal single-cell transcriptomics and epigenetics. Nat. Immunol. 23, 1600–1613 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Daniel, B. et al. Divergent clonal differentiation trajectories of T cell exhaustion. Nat. Immunol. 23, 1614–1627 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iwai, Y. et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl Acad. Sci. USA 99, 12293–12297 (2002).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Topalian, S. L. et al. Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reck, M. et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N. Engl. J. Med. 375, 1823–1833 (2016).

Article  CAS  PubMed  Google Scholar 

Ferris, R. L. et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 375, 1856–1867 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Nghiem, P. T. et al. PD-1 blockade with pembrolizumab in advanced Merkel-cell carcinoma. N. Engl. J. Med. 374, 2542–2552 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Motzer, R. J. et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373, 1803–1813 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kelderman, S., Schumacher, T. N. & Kvistborg, P. Mismatch repair-deficient cancers are targets for anti-PD-1 therapy. Cancer Cell 28, 11–13 (2015).

Article  CAS  PubMed  Google Scholar 

Pauken, K. E. et al. The PD-1 pathway regulates development and function of memory CD8+ T cells following respiratory viral infection. Cell Rep. 31, 107827 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kalia, V. et al. Metabolic regulation by PD-1 signaling promotes long-lived quiescent CD8 T cell memory in mice. Sci. Transl. Med. 13, eaba6006 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Odorizzi, P. M. et al. Genetic absence of PD-1 promotes accumulation of terminally differentiated exhausted CD8+ T cells. J. Exp. Med. 212, 1125–1137 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sen, D. R. et al. The epigenetic landscape of T cell exhaustion. Science 354, 1165–1169 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miller, B. C. et al. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol. 20, 326–336 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pauken, K. E. et al. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 354, 1160–1165 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yoshida, H. et al. The cis-regulatory atlas of the mouse immune system. Cell 176, 897–912 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matloubian, M., Concepcion, R. J. & Ahmed, R. CD4+ T cells are required to sustain CD8+ cytotoxic T-cell responses during chronic viral infection. J. Virol. 68, 8056–8063 (1994).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, Z. et al. TCF-1-centered transcriptional network drives an effector versus exhausted CD8 T cell-fate decision. Immunity 51, 840–855 (2019).

Article 

留言 (0)

沒有登入
gif