Fazaludeen Koya S, Lordson J et al (2022) Tuberculosis and diabetes in India: stakeholder perspectives on health system challenges and opportunities for integrated care. J Epidemiol Glob Health 12(1):104–112
Article PubMed PubMed Central Google Scholar
van Crevel R, Critchley JA (2021) The interaction of diabetes and tuberculosis: translating research to policy and practice. Trop Med Infect Dis 6(1):8
Article PubMed PubMed Central Google Scholar
Guidelines for programmatic management of drug resistant tuberculosis in India 2021. Downloaded from https://tbcindia.gov.in/showfile.php?lid=3590. Last accessed on 3 Aug 2023
Dostalek M, Akhlaghi F, Puzanovova M (2012) Effect of diabetes mellitus on pharmacokinetic and pharmacodynamic properties of drugs. Clin Pharmacokinet 51(8):481–99
Article PubMed CAS Google Scholar
Babalik A, Ulus IH, Bakirci N et al (2013) Plasma concentrations of isoniazid and rifampin are decreased in adult pulmonary tuberculosis patients with diabetes mellitus. Antimicrob Agents Chemother 57(11):5740–2
Article PubMed PubMed Central CAS Google Scholar
Nijland HMJ, Ruslami R, Stalenhoef JE et al (2006) Exposure to rifampicin is strongly reduced in patients with tuberculosis and type 2 diabetes. Clin Infect Dis 43(7):848–54
Article PubMed CAS Google Scholar
Alfarisi O, Mave V, Gaikwad S et al (2018) Effect of diabetes mellitus on the pharmacokinetics and pharmacodynamics of tuberculosis treatment. Antimicrob Agents Chemother 62(11):e01383-18
Article PubMed PubMed Central Google Scholar
Mtabho CM, Semvua HH, van den Boogaard J et al (2019) Effect of diabetes mellitus on TB drug concentrations in Tanzanian patients. J Antimicrob Chemother 74(12):3537–45
Article PubMed PubMed Central CAS Google Scholar
Ruslami R, Nijland HM, Adhiarta IG et al (2010) Pharmacokinetics of antituberculosis drugs in pulmonary tuberculosis patients with type 2 diabetes. Antimicrob Agents Chemother 54(3):1068–74
Article PubMed CAS Google Scholar
Ramachandran G, Chandrasekaran P, Gaikwad S, et al (2020) Cohort for Tuberculosis Research by the Indo-US Partnership (CTRIUMPh) Team. Subtherapeutic rifampicin concentration is associated with unfavorable tuberculosis treatment outcomes. Clin Infect Dis 70(7):1463-1470
Ramachandran G, Hemanth Kumar AK, Kannan T et al (2023) Pharmacokinetics of rifampicin, isoniazid & pyrazinamide during daily & intermittent dosing: a preliminary study. Indian J Med Res 157(2–3):211–215
Article PubMed PubMed Central CAS Google Scholar
Hemanth Kumar AK, Kannan T, Chandrasekaran V et al (2016) Pharmacokinetics of thrice-weekly rifampicin, isoniazid and pyrazinamide in adult tuberculosis patients in India. Int J Tuberc Lung Dis 20(9):1236–41
Article PubMed CAS Google Scholar
Prahl JB, Lundqvist M, Bahl JM et al (2016) Simultaneous quantification of isoniazid, rifampicin, ethambutol and pyrazinamide by liquid chromatography/tandem mass spectrometry. APMIS 124(11):1004–1015
Article PubMed CAS Google Scholar
U.S. Food and Drug Administration (2018) Bioanalytical method validation guidance for industry. [Internet]. Rockville (MD): U.S. Food and Drug Administration [cited 2024 Aug 8]. Available from: https://www.fda.gov/media/70858/download. Accessed 8 Aug 2024
Ram K, Sheikh S, Bhati RK et al (2021) Steady-state pharmacokinetic and pharmacodynamic profiling of colistin in critically ill patients with multi-drug-resistant gram-negative bacterial infections, along with differences in clinical, microbiological and safety outcome. Basic Clin Pharmacol Toxicol 128(1):128–140
Article PubMed CAS Google Scholar
WHO (2021) Technical report on critical concentrations for drug susceptibility testing of isoniazid and the rifamycins (rifampicin, rifabutin and rifapentine). [Internet]. Geneva: World Health Organization [cited 2024 Aug 8]. Available from: https://www.who.int/publications/i/item/9789240017283. Accessed 8 Aug 2024
Peloquin CA (2002) Therapeutic drug monitoring in the treatment of tuberculosis. Drugs 62(15):2169–83
Article PubMed CAS Google Scholar
The use of the WHO-UMC system for standardized case causality assessment. [Internet]. Uppsala: World Health Organization (WHO)-Uppsala Monitoring Centre. 2018 [cited 2024 Aug 8]. Available from: https://who-umc.org/media/164200/who-umc-causality-assessment_new-logo.pdf. Accessed 8 Aug 2024
Gumbo T (2018) Chemotherapy of tuberculosis, Mycobacterium avium complex disease, and leprosy. In: Brunton L, Hilal-Dandan R, Knollmann BC (eds) Goodman and Gilman’s The pharmacological basis of therapeutics (13th ed.) McGraw-Hil, New York, pp 1067-74
Semiz S, Dujic T, Ostanek B et al (2011) Association of NAT2 polymorphisms with type 2 diabetes in a population from Bosnia and Herzegovina. Arch Med Res 42(4):311–17
Article PubMed CAS Google Scholar
Srivastava DS, Mittal RD (2005) Genetic polymorphism of the N-acetyltransferase 2 gene, and susceptibility to prostate cancer: a pilot study in north Indian population. BMC Urol 5:12
Article PubMed PubMed Central Google Scholar
Hemanth Kumar AK, Ramesh K, Kannan T et al (2017) N-acetyltransferase gene polymorphisms and plasma isoniazid concentrations in patients with tuberculosis. Indian J Med Res 145(1):118–123
Article PubMed PubMed Central CAS Google Scholar
Wang P, Pradhan K, Zhong et al (2016) Isoniazid metabolism and hepatotoxicity. Acta Pharm Sin B 6(5):384-392
Tran M, Elbarbry F (2016) Influence of diabetes mellitus on pharmacokinetics of drugs. MOJ Bioequiv Availab 2(1):3–4
Sileshi T, Mekonen G, Makonnen E et al (2022) Effect of genetic variations in drug-metabolizing enzymes and drug transporters on the pharmacokinetics of rifamycins: a systematic review. Pharmgenomics Pers Med 15:561–571
PubMed PubMed Central Google Scholar
Hasegawa Y, Kishimoto S, Shibatani N et al (2010) Effects of insulin on CYP3A activity and nicardipine disposition in streptozotocin-induced diabetic rats. J Pharm Pharmacol 62(7):883–9
Article PubMed CAS Google Scholar
Kuzgun G, Başaran R, Arıoğlu İnan E et al (2020) Effects of insulin treatment on hepatic CYP1A1 and CYP2E1 activities and lipid peroxidation levels in streptozotocin-induced diabetic rats. J Diabetes Metab Disord 19(2):1157–1164
Article PubMed PubMed Central CAS Google Scholar
De Waziers I, Garlatti M, Bouguet J et al (1995) Insulin down-regulates cytochrome P450 2B and 2E expression at the post-transcriptional level in the rat hepatoma cell line. Mol Pharmacol 47(3):474–9
Liu H, Liu X, Jia L et al (2008) Insulin therapy restores impaired function and expression of P-glycoprotein in blood-brain barrier of experimental diabetes. Biochem Pharmacol 75(8):1649–58
Article PubMed CAS Google Scholar
Kobayashi T, Koizumi T, Kobayashi M et al (2017) Insulin stimulates transport of organic anion compounds mediated by organic anion transporting polypeptide 2B1 in the human intestinal cell line Caco-2. Drug Metab Pharmacokinet 32(2):157–163
Article PubMed CAS Google Scholar
Banday MZ, Sameer AS, Nissar S (2020) Pathophysiology of diabetes: an overview. Avicenna J Med 10(4):174–188
Article PubMed PubMed Central Google Scholar
Kim R, Jayanti RP, Lee H et al (2023) Development of a population pharmacokinetic model of pyrazinamide to guide personalized therapy: impacts of geriatric and diabetes mellitus on clearance. Front Pharmacol 26(14):1116226
Mashayekhi-Sardoo H, Mohammadpour AH, Nomani H et al (2019) The effect of diabetes mellitus on pharmacokinetics, pharmacodynamics and adverse drug reactions of anticancer drugs. J Cell Physiol 234(11):19339–19351
Article PubMed CAS Google Scholar
Alghamdi WA, Al-Shaer MH, Peloquin CA (2018) Protein binding of first-line antituberculosis drugs. Antimicrob Agents Chemother 62(7):e00641-18
Article PubMed PubMed Central CAS Google Scholar
Gouju J, Legeay S (2023) Pharmacokinetics of obese adults: not only an increase in weight. Biomed Pharmacother 166:115281
Article PubMed CAS Google Scholar
Hempel A, Maasch C, Heintze U et al (1997) High glucose concentrations increase endothelial cell permeability via activation of protein kinase C alpha. Circ Res 81(3):363–71
留言 (0)