Induced electric fields in MRI settings and electric vestibular stimulations: same vestibular effects?

Antunes A, Glover PM, Li Y et al (2012) Magnetic field effects on the vestibular system: calculation of the pressure on the cupula due to ionic current-induced Lorentz force. Phys Med Biol 57:4477–4487. https://doi.org/10.1088/0031-9155/57/14/4477

Article  PubMed  Google Scholar 

Arshad Q, Siddiqui S, Ramachandran S et al (2015) Right hemisphere dominance directly predicts both baseline V1 cortical excitability and the degree of top-down modulation exerted over low-level brain structures. Neuroscience 311:484–489. https://doi.org/10.1016/j.neuroscience.2015.10.045

Article  CAS  PubMed  Google Scholar 

Atkinson IC, Sonstegaard R, Pliskin NH, Thulborn KR (2010) Vital signs and cognitive function are not affected by 23-sodium and 17-oxygen magnetic resonance imaging of the human brain at 9.4 T. J Magn Reson Imaging 32:82–87. https://doi.org/10.1002/jmri.22221

Article  PubMed  Google Scholar 

Attwell D (2003) Interaction of low frequency electric fields with the nervous system: the retina as a model system. Radiat Prot Dosimetry 106:341–348

Article  CAS  PubMed  Google Scholar 

Balaban CD (2004) Projections from the parabrachial nucleus to the vestibular nuclei : potential substrates for autonomic and limbic influences on vestibular responses. Brain Res 996:126–137. https://doi.org/10.1016/j.brainres.2003.10.026

Article  CAS  PubMed  Google Scholar 

Baloh RW, Honrubia V, Kerber A (2011) Clinical neurophysiology of the vestibular system.4 th Edition. Oxford University Pres, Inc, New York

Google Scholar 

Bense S, Stephan T, Yousry TA et al (2001) Multisensory cortical signal increases and decreases during vestibular galvanic stimulation (fMRI). J Neurophysiol 85:886–899

Article  CAS  PubMed  Google Scholar 

Bent LR, Bolton PS, Macefield VG (2006) Modulation of muscle sympathetic bursts by sinusoidal galvanic vestibular stimulation in human subjects. Exp Brain Res 174:701–711. https://doi.org/10.1007/s00221-006-0515-6

Article  PubMed  Google Scholar 

Bikson M (2013) Quasi uniform assumption. Brain Stimul 6:704–705. https://doi.org/10.1016/j.brs.2012.11.005.The

Article  PubMed  Google Scholar 

Boegle R, Stephan T, Ertl M et al (2016) Magnetic vestibular stimulation modulates default mode network fluctuations. NeuroImage 127:409–421. https://doi.org/10.1016/j.neuroimage.2015.11.065

Article  PubMed  Google Scholar 

Boegle R, Ertl M, Stephan T, Dieterich M (2017) Magnetic vestibular stimulation influences resting-state fluctuations and induces visual-vestibular biases. J Neurol 264:999–1001. https://doi.org/10.1007/s00415-017-8447-6

Article  PubMed  Google Scholar 

Boegle R, Kirsch V, Gerb J, Dieterich M (2020) Modulatory effects of magnetic vestibular stimulation on resting-state networks can be explained by subject-specific orientation of inner-ear anatomy in the MR static magnetic field. J Neurol 267:91–103. https://doi.org/10.1007/s00415-020-09957-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bolton PS, Wardman DL, Macefield VG (2004) Absence of short-term vestibular modulation of muscle sympathetic outflow, assessed by brief galvanic vestibular stimulation in awake human subjects. Exp Brain Res 154:39–43. https://doi.org/10.1007/s00221-003-1631-1

Article  PubMed  Google Scholar 

Borel L, Lopez C, Péruch P, Lacour M (2008) Vestibular syndrome: a change in internal spatial representation. Neurophysiol Clin 38:375–389. https://doi.org/10.1016/j.neucli.2008.09.002

Article  CAS  PubMed  Google Scholar 

Borel L, Redon-Zouiteni C, Cauvin P et al (2014) Unilateral vestibular loss impairs external space representation. PLoS ONE 9:1–10. https://doi.org/10.1371/journal.pone.0088576

Article  CAS  Google Scholar 

Bouisset N (2020) Impact of Extremely Low-Frequency Magnetic and Electric Stimuli on Vestibular-Driven Outcomes. Electronic Thesis and Dissertation Repository. 7562. https://ir.lib.uwo.ca/etd/7562

Bouisset N, Nissi J, Laakso I et al (2024) Is activation of the vestibular system by electromagnetic induction a possibility in an. MRI Context? Bioelectromagnetics 45:171–183. https://doi.org/10.1002/bem.22497

Article  PubMed  Google Scholar 

Brandt T, Strupp M (2005) General vestibular testing. Clin Neurophysiol 116:406–426. https://doi.org/10.1016/j.clinph.2004.08.009

Article  PubMed  Google Scholar 

Bringuier E (2003) Electrostatic charges in v × B fields and the phenomenon of induction. Eur J Phys 24:21–29. https://doi.org/10.1088/0143-0807/24/1/304

Article  Google Scholar 

Brown E, Staines K, Dental B et al (2016) Case report vestibular Schwannoma presenting as oral dysgeusia : an easily missed diagnosis. Case Rep Dent 2016:1–6

Google Scholar 

Cason AM, Kwon B, Smith JC, Houpt TA (2009) Labyrinthectomy abolishes the behavioral and neural response of rats to a high-strength static magnetic field. Physiol Behav 97:36–43. https://doi.org/10.1016/j.physbeh.2009.01.018

Article  CAS  PubMed  Google Scholar 

Cavin I, Glover PM, Bowtell R, Gowland P (2007a) Threshold for perceiving a metallic taste at large magnetic field. J Magn Reson Imaging 1357–1361

Cavin ID, Glover PM, Bowtell RW, Gowland PA (2007b) Thresholds for perceiving metallic taste at high magnetic field. J Magn Reson Imaging 26:1357–1361. https://doi.org/10.1002/jmri.21153

Article  PubMed  Google Scholar 

Chakeres DW, De Vocht F (2005) Static magnetic field effects on human subjects related to magnetic resonance imaging systems. Prog Biophys Mol Biol 87:255–265. https://doi.org/10.1016/j.pbiomolbio.2004.08.012

Article  PubMed  Google Scholar 

Chakeres DW, Kangarlu A, Boudoulas H, Young DC (2003) Effect of static magnetic field exposure of up to 8 Tesla on sequential human vital sign measurements. J Magn Reson Imaging 18:346–352. https://doi.org/10.1002/jmri.10367

Article  PubMed  Google Scholar 

Chin Tang P, Gernandt BE (1969) Autonomic responses to vestibular stimulation. Exp Neurol 24:558–578

Article  Google Scholar 

Coats A (1972) The sinusoidal galvanic body sway response. Acta Otolaryngol 74:155–162

Article  CAS  PubMed  Google Scholar 

Committeri G, Pitzalis S, Galati G et al (2007) Neural bases of personal and extrapersonal neglect in humans. Brain 130:431–441. https://doi.org/10.1093/brain/awl265

Article  PubMed  Google Scholar 

Crozier S, Liu F (2005) Numerical evaluation of the fields induced by body motion in or near high-field MRI scanners. Prog Biophys Mol Biol 87:267–278. https://doi.org/10.1016/j.pbiomolbio.2004.08.002

Article  PubMed  Google Scholar 

Crozier S, Trakic A, Wang H, Liu F (2007) Numerical study of currents in workers induced by body-motion around high-ultrahigh field MRI magnets. J Magn Reson Imaging 26:1261–1277. https://doi.org/10.1002/jmri.21160

Article  Google Scholar 

Curthoys IS, MacDougall HG (2012) What galvanic vestibular stimulation actually activates. Front Neurol JUL 1–5. https://doi.org/10.3389/fneur.2012.00117

Dakin CJ, van den Luu BL et al (2010) Frequency-specific modulation of vestibular-evoked sway responses in humans. J Neurophysiol 103:1048–1056. https://doi.org/10.1152/jn.00881.2009

Article  PubMed  Google Scholar 

Dannenbaum E, Paquet N, Chilingaryan G, Fung J (2009) Clinical evaluation of dynamic visual acuity in subjects with unilateral vestibular hypofunction. Otol Neurotol 30:368–372. https://doi.org/10.1097/MAO.0b013e31819bda35

Article  PubMed  Google Scholar 

Day BL (1999) Galvanic vestibular stimulation: New uses for an old tool. J Physiol 517:631. https://doi.org/10.1111/j.1469-7793.1999.0631s.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Day B, Guerraz M, Cole J (2002) Sensory interactions for human Balance Control revealed by galvanic vestibular stimulation. In: Gandevia SC, Proske U, SDG (eds) Sensorimotor Control of Movement and posture. Advances in Experimental Medicine and Biology,vol, vol 508. Springer, Boston, MA, pp 129–137

Chapter  Google Scholar 

留言 (0)

沒有登入
gif