Rack1 regulates B-cell development and function by binding to and stabilizing the transcription factor Pax5

Ripperger TJ, Bhattacharya D. Transcriptional and metabolic control of memory B cells and plasma cells. Annu Rev Immunol. 2021;39:345–68.

Article  PubMed  CAS  Google Scholar 

Bassing CH, Swat W, Alt FW. The mechanism and regulation of chromosomal V(D)J recombination. Cell. 2002;109:S45–55.

Article  PubMed  CAS  Google Scholar 

Berland R, Wortis HH. Origins and functions of B-1 cells with notes on the role of CD5. Annu Rev Immunol. 2002;20:253–300.

Article  PubMed  CAS  Google Scholar 

Cerutti A, Cols M, Puga I. Marginal zone B cells: virtues of innate-like antibody-producing lymphocytes. Nat Rev Immunol. 2013;13:118–32.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Victora GD, Nussenzweig MC. Germinal centers. Annu Rev Immunol. 2012;30:429–57.

Article  PubMed  CAS  Google Scholar 

Nutt SL, Hodgkin PD, Tarlinton DM, Corcoran LM. The generation of antibody-secreting plasma cells. Nat Rev Immunol. 2015;15:160–71.

Article  PubMed  CAS  Google Scholar 

Nutt SL, Heavy B, Rolink AG, Busslinger M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature. 1999;401:556–62.

Article  PubMed  CAS  Google Scholar 

Horcher M, Souabni A, Busslinger M. Pax5/BSAP maintains the identity of B cells in late B lymphopoiesis. Immunity. 2001;14:779–90.

Article  PubMed  CAS  Google Scholar 

Calderón L, Schindler K, Malin SG, Schebesta A, Sun Q, Schwickert T, et al. Pax5 regulates B-cell immunity by promoting PI3K signaling via PTEN downregulation. Sci Immunol. 2021;6:eabg5003.

Article  PubMed  PubMed Central  Google Scholar 

Kaiser FMP, Gruenbacher S, Oyaga MR, Nio E, Jaritz M, Sun Q, et al. Biallelic PAX5 mutations cause hypogammaglobulinemia, sensorimotor deficits, and autism spectrum disorder. J Exp Med. 2022;219:e20220498.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Fuxa M, Busslinger M. Reporter gene insertions reveal a strictly B lymphoid-specific expression pattern of Pax5 in support of its B-cell identity function. J Immunol. 2007;178:3031–7.

Article  PubMed  CAS  Google Scholar 

Delogu A, Schebesta A, Sun Q, Aschenbrenner K, Perlot T, Busslinger M. Gene repression by Pax5 in B cells is essential for blood cell homeostasis and is reversed in plasma cells. Immunity. 2006;24:269–81.

Article  PubMed  CAS  Google Scholar 

Revilla-i-Domingo R, Bilic I, Vilagos B, Tahoh H, Ebert A, Tamir IM, et al. The B-cell identity factor Pax5 regulates distinct transcriptional programs in early and late B lymphopoiesis. EMBO J. 2012;31:3130–46.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Schebesta A, McManus S, Salvagiotto G, Delogu A, Busslinger GA, Busslinger M. Transcription factor Pax5 activates the chromatin of key genes involved in B-cell signaling, adhesion, migration, and immune function. Immunity. 2007;27:49–63.

Article  PubMed  CAS  Google Scholar 

Nutt SL, Morrison AM, Dörfler P, Rolink A, Busslinger M. Identification of BSAP (Pax-5) target genes in early B-cell development by loss- and gain-of-function experiments. EMBO J. 1998;17:2319–33.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Pasqualucci L, Neumeister P, Goossens T, Nanjangud G, Chaganti RS, Küppers R, Dalla-Favera R. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature. 2001;412:341–6.

Article  PubMed  CAS  Google Scholar 

Busslinger M, Klix N, Pfeffer P, Graninger PG, Kozmik Z. Deregulation of PAX-5 by translocation of the Eµ enhancer of the IgH locus adjacent to two alternative PAX-5 promoters in a diffuse large-cell lymphoma. Proc Natl Acad Sci USA. 1996;93:6129–34.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lida S, Rao PH, Nallasivam P, Hibshoosh H, Butler M, Louie DC, et al. The t(9;14)(p13;q32) chromosomal translocation associated with lymphoplasmacytoid lymphoma involves the PAX-5 gene. Blood. 1996;88:4110–7.

Article  CAS  Google Scholar 

Morrison AM, Jäger U, Chott A, Schebesta M, Haas OA, Busslinger M. Deregulated PAX-5 transcription from a translocated IgH promoter in marginal zone lymphoma. Blood. 1998;92:3865–78.

Article  PubMed  CAS  Google Scholar 

Cozma D, Yu D, Hodawadekar S, Azvolinsky A, Grande S, Tobias JW, et al. B-cell activator PAX5 promotes lymphomagenesis through stimulation of B-cell receptor signaling. J Clin Invest. 2007;117:2602–10.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Usacheva A, Smith R, Minshall R, Baida G, Seng S, Croze E, et al. The WD motif-containing protein receptor for activated protein kinase C (RACK1) is required for recruitment and activation of signal transducer and activator of transcription 1 through the type I interferon receptor. J Biol Chem. 2001;276:22948–53.

Article  PubMed  CAS  Google Scholar 

Zhang W, Zong CS, Hermanto U, Lopez-Bergami P, Ronai Z, Wang LH. RACK1 recruits STAT3 specifically to insulin and insulin-like growth factor 1 receptors for activation, which is important for regulating anchorage-independent growth. Mol Cell Biol. 2006;26:413–24.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Okano K, Schnaper HW, Bomsztyk K, Hayashida T. RACK1 binds to Smad3 to modulate transforming growth factor-β-stimulated α2(I) collagen transcription in renal tubular epithelial cells. J Biol Chem. 2006;281:26196–204.

Article  PubMed  CAS  Google Scholar 

Zhu Q, Chen L, Li Y, Huang M, Shao J, Li S, et al. Rack1 is essential for corticogenesis by preventing p21-dependent senescence in neural stem cells. Cell Rep. 2021;36:109639.

Article  PubMed  CAS  Google Scholar 

Liu YV, Baek JH, Zhang H, Diez R, Cole RN, Semenza GL. RACK1 competes with HSP90 for binding to HIF-1α and is required for O2-independent and HSP90 inhibitor-induced degradation of HIF-1α. Mol Cell. 2007;25:207–17.

Article  PubMed  PubMed Central  Google Scholar 

Wang J, Chen X, Hu H, Yao M, Song Y, Yang A, et al. PCAT-1 facilitates breast cancer progression by binding to RACK1 and enhancing oxygen-independent stability of HIF-1α. Mol Ther Nucleic Acids. 2021;24:310–24.

Article  PubMed  PubMed Central  Google Scholar 

Cao J, Zhao M, Liu J, Zhang X, Pei Y, Wang J, et al. RACK1 promotes self-renewal and chemoresistance of cancer stem cells in human hepatocellular carcinoma through stabilizing Nanog. Theranostics. 2019;9:811–28.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Oien DB, Sharma S, Hattersley MM, DuPont M, Criscione SW, Prickett L, et al. BET inhibition targets ABC-DLBCL constitutive B-cell receptor signaling through PAX5. Blood Adv. 2023;7:5108–21.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Schmidt-Supprian M, Rajewsky K. Vagaries of conditional gene targeting. Nat Immunol. 2007;8:665–8.

Article  PubMed  CAS 

留言 (0)

沒有登入
gif