Ammonia-induced stress response in liver disease progression and hepatic encephalopathy

Karlsen, T. H. et al. The EASL-Lancet Liver Commission: protecting the next generation of Europeans against liver disease complications and premature mortality. Lancet 399, 61–116 (2022).

Article  PubMed  Google Scholar 

Haussinger, D. Nitrogen metabolism in liver: structural and functional organization and physiological relevance. Biochem. J. 267, 281–290 (1990).

Article  CAS  PubMed  PubMed Central  Google Scholar 

European Association for the Study of the Liver EASL Clinical Practice Guidelines on the management of hepatic encephalopathy. J. Hepatol. 77, 807–824 (2022).

Article  Google Scholar 

Haussinger, D. et al. Hepatic encephalopathy. Nat. Rev. Dis. Prim. 8, 43 (2022).

Article  PubMed  Google Scholar 

Arroyo, V. et al. The systemic inflammation hypothesis: towards a new paradigm of acute decompensation and multiorgan failure in cirrhosis. J. Hepatol. 74, 670–685 (2021).

Article  CAS  PubMed  Google Scholar 

Rinella, M. E. et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J. Hepatol. 79, 1542–1556 (2023).

Article  CAS  PubMed  Google Scholar 

Gallego-Durán, R. et al. Liver injury in non-alcoholic fatty liver disease is associated with urea cycle enzyme dysregulation. Sci. Rep. 12, 3418 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Lemberg, A. & Fernández, M. A. Hepatic encephalopathy, ammonia, glutamate, glutamine and oxidative stress. Ann. Hepatol. 8, 95–102 (2009).

Article  PubMed  Google Scholar 

Jalan, R. et al. Ammonia produces pathological changes in human hepatic stellate cells and is a target for therapy of portal hypertension. J. Hepatol. 64, 823–833 (2016).

Article  CAS  PubMed  Google Scholar 

Hadi, R. et al. Utility of glutamine synthetase immunohistochemistry in identifying features of regressed cirrhosis. Mod. Pathol. 33, 448–455 (2020).

Article  CAS  PubMed  Google Scholar 

Bromberg, P. A., Robin, E. D. & Forkner, C. E. Jr. The existence of ammonia in blood in vivo with observations on the significance of the NH4+-NH3 system. J. Clin. Invest. 39, 332–341 (1960).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moser, H. Electrophysiological evidence for ammonium as a substitute for potassium in activating the sodium pump in a crayfish sensory neuron. Can. J. Physiol. Pharmacol. 65, 141–145 (1987).

Article  CAS  PubMed  Google Scholar 

Aickin, C. C., Deisz, R. A. & Lux, H. D. Ammonium action on post-synaptic inhibition in crayfish neurones: implications for the mechanism of chloride extrusion. J. Physiol. 329, 319–339 (1982).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kelly, T., Kafitz, K. W., Roderigo, C. & Rose, C. R. Ammonium-evoked alterations in intracellular sodium and pH reduce glial glutamate transport activity. Glia 57, 921–934 (2009).

Article  PubMed  Google Scholar 

Bakouh, N., Benjelloun, F., Cherif-Zahar, B. & Planelles, G. The challenge of understanding ammonium homeostasis and the role of the Rh glycoproteins. Transfus. Clin. Biol. 13, 139–146 (2006).

Article  CAS  PubMed  Google Scholar 

Weiner, I. D. & Verlander, J. W. Ammonia transport in the kidney by Rhesus glycoproteins. Am. J. Physiol. Ren. Physiol. 306, F1107–F1120 (2014).

Article  CAS  Google Scholar 

Allen, W. J. & Collinson, I. A molecular dual carriageway. Elife 9, e61148 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Grishin, D. V., Kasap, E. Y., Izotov, A. A. & Lisitsa, A. V. Multifaceted ammonia transporters. All Life 13, 486–497 (2020).

Article  CAS  Google Scholar 

Saparov, S. M., Liu, K., Agre, P. & Pohl, P. Fast and selective ammonia transport by aquaporin-8. J. Biol. Chem. 282, 5296–5301 (2007).

Article  CAS  PubMed  Google Scholar 

Capiglioni, A. M., Capitani, M. C., Marrone, J. & Marinelli, R. A. Adenoviral transfer of human aquaporin-8 gene to mouse liver improves ammonia-derived ureagenesis. Cells 12, 1535 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rose, C. F. et al. Hepatic encephalopathy: novel insights into classification, pathophysiology and therapy. J. Hepatol. 73, 1526–1547 (2020).

Article  PubMed  Google Scholar 

Zhu, R. et al. The pathogenesis of gut microbiota in hepatic encephalopathy by the gut-liver-brain axis. Biosci. Rep. 43, BSR20222524 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brown, H., Brown, M. E., Michelson, P. & McDermott, W. V. Jr. Urea-cycle enzymes in liver disease. JAMA 199, 35–36 (1967).

Article  CAS  PubMed  Google Scholar 

Ziki, R. A. & Colnot, S. Glutamine metabolism, a double agent combating or fuelling hepatocellular carcinoma. JHEP Rep. 6, 101077 (2024).

Article  PubMed  PubMed Central  Google Scholar 

Frieg, B., Gorg, B., Gohlke, H. & Haussinger, D. Glutamine synthetase as a central element in hepatic glutamine and ammonia metabolism: novel aspects. Biol. Chem. 402, 1063–1072 (2021).

Article  CAS  PubMed  Google Scholar 

Paluschinski, M. et al. Characterization of the scavenger cell proteome in mouse and rat liver. Biol. Chem. 402, 1073–1085 (2021).

Article  CAS  PubMed  Google Scholar 

Qvartskhava, N. et al. Hyperammonemia in gene-targeted mice lacking functional hepatic glutamine synthetase. Proc. Natl Acad. Sci. USA 112, 5521–5526 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gebhardt, R. & Reichen, J. Changes in distribution and activity of glutamine synthetase in carbon tetrachloride-induced cirrhosis in the rat: potential role in hyperammonemia. Hepatology 20, 684–691 (1994).

Article  CAS  PubMed  Google Scholar 

Olde Damink, S. W. et al. Interorgan ammonia and amino acid metabolism in metabolically stable patients with cirrhosis and a TIPSS. Hepatology 36, 1163–1171 (2002).

Article  CAS  PubMed  Google Scholar 

Olde Damink, S. W. et al. Kidney plays a major role in ammonia homeostasis after portasystemic shunting in patients with cirrhosis. Am. J. Physiol. Gastrointest. Liver Physiol. 291, G189–G194 (2006).

Article  CAS  PubMed  Google Scholar 

Mpabanzi, L. et al. Fluxomics reveals cellular and molecular basis of increased renal ammoniagenesis. NPJ Syst. Biol. Appl. 8, 49 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jalan, R. & Kapoor, D. Reversal of diuretic-induced hepatic encephalopathy with infusion of albumin but not colloid. Clin. Sci. 106, 467–474 (2004).

Article  CAS 

留言 (0)

沒有登入
gif