Karlsen, T. H. et al. The EASL-Lancet Liver Commission: protecting the next generation of Europeans against liver disease complications and premature mortality. Lancet 399, 61–116 (2022).
Haussinger, D. Nitrogen metabolism in liver: structural and functional organization and physiological relevance. Biochem. J. 267, 281–290 (1990).
Article CAS PubMed PubMed Central Google Scholar
European Association for the Study of the Liver EASL Clinical Practice Guidelines on the management of hepatic encephalopathy. J. Hepatol. 77, 807–824 (2022).
Haussinger, D. et al. Hepatic encephalopathy. Nat. Rev. Dis. Prim. 8, 43 (2022).
Arroyo, V. et al. The systemic inflammation hypothesis: towards a new paradigm of acute decompensation and multiorgan failure in cirrhosis. J. Hepatol. 74, 670–685 (2021).
Article CAS PubMed Google Scholar
Rinella, M. E. et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J. Hepatol. 79, 1542–1556 (2023).
Article CAS PubMed Google Scholar
Gallego-Durán, R. et al. Liver injury in non-alcoholic fatty liver disease is associated with urea cycle enzyme dysregulation. Sci. Rep. 12, 3418 (2022).
Article PubMed PubMed Central Google Scholar
Lemberg, A. & Fernández, M. A. Hepatic encephalopathy, ammonia, glutamate, glutamine and oxidative stress. Ann. Hepatol. 8, 95–102 (2009).
Jalan, R. et al. Ammonia produces pathological changes in human hepatic stellate cells and is a target for therapy of portal hypertension. J. Hepatol. 64, 823–833 (2016).
Article CAS PubMed Google Scholar
Hadi, R. et al. Utility of glutamine synthetase immunohistochemistry in identifying features of regressed cirrhosis. Mod. Pathol. 33, 448–455 (2020).
Article CAS PubMed Google Scholar
Bromberg, P. A., Robin, E. D. & Forkner, C. E. Jr. The existence of ammonia in blood in vivo with observations on the significance of the NH4+-NH3 system. J. Clin. Invest. 39, 332–341 (1960).
Article CAS PubMed PubMed Central Google Scholar
Moser, H. Electrophysiological evidence for ammonium as a substitute for potassium in activating the sodium pump in a crayfish sensory neuron. Can. J. Physiol. Pharmacol. 65, 141–145 (1987).
Article CAS PubMed Google Scholar
Aickin, C. C., Deisz, R. A. & Lux, H. D. Ammonium action on post-synaptic inhibition in crayfish neurones: implications for the mechanism of chloride extrusion. J. Physiol. 329, 319–339 (1982).
Article CAS PubMed PubMed Central Google Scholar
Kelly, T., Kafitz, K. W., Roderigo, C. & Rose, C. R. Ammonium-evoked alterations in intracellular sodium and pH reduce glial glutamate transport activity. Glia 57, 921–934 (2009).
Bakouh, N., Benjelloun, F., Cherif-Zahar, B. & Planelles, G. The challenge of understanding ammonium homeostasis and the role of the Rh glycoproteins. Transfus. Clin. Biol. 13, 139–146 (2006).
Article CAS PubMed Google Scholar
Weiner, I. D. & Verlander, J. W. Ammonia transport in the kidney by Rhesus glycoproteins. Am. J. Physiol. Ren. Physiol. 306, F1107–F1120 (2014).
Allen, W. J. & Collinson, I. A molecular dual carriageway. Elife 9, e61148 (2020).
Article PubMed PubMed Central Google Scholar
Grishin, D. V., Kasap, E. Y., Izotov, A. A. & Lisitsa, A. V. Multifaceted ammonia transporters. All Life 13, 486–497 (2020).
Saparov, S. M., Liu, K., Agre, P. & Pohl, P. Fast and selective ammonia transport by aquaporin-8. J. Biol. Chem. 282, 5296–5301 (2007).
Article CAS PubMed Google Scholar
Capiglioni, A. M., Capitani, M. C., Marrone, J. & Marinelli, R. A. Adenoviral transfer of human aquaporin-8 gene to mouse liver improves ammonia-derived ureagenesis. Cells 12, 1535 (2023).
Article CAS PubMed PubMed Central Google Scholar
Rose, C. F. et al. Hepatic encephalopathy: novel insights into classification, pathophysiology and therapy. J. Hepatol. 73, 1526–1547 (2020).
Zhu, R. et al. The pathogenesis of gut microbiota in hepatic encephalopathy by the gut-liver-brain axis. Biosci. Rep. 43, BSR20222524 (2023).
Article CAS PubMed PubMed Central Google Scholar
Brown, H., Brown, M. E., Michelson, P. & McDermott, W. V. Jr. Urea-cycle enzymes in liver disease. JAMA 199, 35–36 (1967).
Article CAS PubMed Google Scholar
Ziki, R. A. & Colnot, S. Glutamine metabolism, a double agent combating or fuelling hepatocellular carcinoma. JHEP Rep. 6, 101077 (2024).
Article PubMed PubMed Central Google Scholar
Frieg, B., Gorg, B., Gohlke, H. & Haussinger, D. Glutamine synthetase as a central element in hepatic glutamine and ammonia metabolism: novel aspects. Biol. Chem. 402, 1063–1072 (2021).
Article CAS PubMed Google Scholar
Paluschinski, M. et al. Characterization of the scavenger cell proteome in mouse and rat liver. Biol. Chem. 402, 1073–1085 (2021).
Article CAS PubMed Google Scholar
Qvartskhava, N. et al. Hyperammonemia in gene-targeted mice lacking functional hepatic glutamine synthetase. Proc. Natl Acad. Sci. USA 112, 5521–5526 (2015).
Article CAS PubMed PubMed Central Google Scholar
Gebhardt, R. & Reichen, J. Changes in distribution and activity of glutamine synthetase in carbon tetrachloride-induced cirrhosis in the rat: potential role in hyperammonemia. Hepatology 20, 684–691 (1994).
Article CAS PubMed Google Scholar
Olde Damink, S. W. et al. Interorgan ammonia and amino acid metabolism in metabolically stable patients with cirrhosis and a TIPSS. Hepatology 36, 1163–1171 (2002).
Article CAS PubMed Google Scholar
Olde Damink, S. W. et al. Kidney plays a major role in ammonia homeostasis after portasystemic shunting in patients with cirrhosis. Am. J. Physiol. Gastrointest. Liver Physiol. 291, G189–G194 (2006).
Article CAS PubMed Google Scholar
Mpabanzi, L. et al. Fluxomics reveals cellular and molecular basis of increased renal ammoniagenesis. NPJ Syst. Biol. Appl. 8, 49 (2022).
Article CAS PubMed PubMed Central Google Scholar
Jalan, R. & Kapoor, D. Reversal of diuretic-induced hepatic encephalopathy with infusion of albumin but not colloid. Clin. Sci. 106, 467–474 (2004).
留言 (0)