Effects of Cannabidiol on Bone Quality in Ovariectomized Rats

Kanis JA (1997) Diagnosis of osteoporosis. Osteoporos Int 7:S108. https://doi.org/10.1007/BF03194355

Article  PubMed  Google Scholar 

Sui K, Tveter KM, Bawagan FG, Buckendahl P, Martinez SA, Jaffri ZH et al. (2022) Cannabidiol-treated ovariectomized mice show improved glucose, energy, and bone metabolism with a bloom in Lactobacillus. Front Pharmacol, pp 1–17. https://doi.org/10.3389/fphar.2022.900667.

Cummings SR, Martin JS, McClung MR, Siris ES, Eastell R, Reid IR et al (2009) Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med 361(8):756–765. https://doi.org/10.1056/NEJMoa0809493

Article  PubMed  CAS  Google Scholar 

Clouse G, Penman S, Hadjiargyrou M, Komatsu DE, Thanos PK. (2021) Examining the role of cannabinoids on osteoporosis: a review. Arch Osteoporos 17(1). https://doi.org/10.1007/s11657-022-01190-x

Seeman P (2016) Cannabidiol is a partial agonist at dopamine D2 High receptors, predicting its antipsychotic clinical dose. Transl Psychiatry 6(10):e920. https://doi.org/10.1038/tp.2016.195

Article  PubMed  PubMed Central  CAS  Google Scholar 

Li D, Lin Z, Meng Q, Wang K, Wu J, Yan H (2017) Cannabidiol administration reduces sublesional cancellous bone loss in rats with severe spinal cord injury. Eur J Pharmacol 809:13–19. https://doi.org/10.1016/j.ejphar.2017.05.011

Article  PubMed  CAS  Google Scholar 

Sophocleous A, Marino S, Kabir D, Ralston SH, Idris AI (2017) Combined deficiency of the Cnr1 and Cnr2 receptors protects against age-related bone loss by osteoclast inhibition. Aging Cell 16(5):1051. https://doi.org/10.1111/acel.12638

Article  PubMed  PubMed Central  CAS  Google Scholar 

Idris AI, Sophocleous A, Landao-Bassonga E, Van’t Hof RJ, Ralston SH (2009) Regulation of bone mass, osteoclast function, and ovariectomy-induced bone loss by the type 2 cannabinoid receptor. Endocrinology 149(11):5619–5626. https://doi.org/10.1210/en.2008-0150

Article  CAS  Google Scholar 

Napimoga MH, Benatti BB, Lima FO, Alves PM, Campos AC, Pena-dos-Santos DR et al (2009) Cannabidiol decreases bone resorption by inhibiting RANK/RANKL expression and pro-inflammatory cytokines during experimental periodontitis in rats. Int Immunopharmacol 9(2):216–222. https://doi.org/10.1016/j.intimp.2008.11.010

Article  PubMed  CAS  Google Scholar 

Kamali A, Oryan A, Hosseini S, Ghanian MH, Alizadeh M, Baghaban Eslaminejad M et al (2019) Cannabidiol-loaded microspheres incorporated into osteoconductive scaffold enhance mesenchymal stem cell recruitment and regeneration of critical-sized bone defects. Mater Sci Eng C 101(March):64–75. https://doi.org/10.1016/j.msec.2019.03.070

Article  CAS  Google Scholar 

Kogan NM, Melamed E, Wasserman E, Raphael B, Breuer A, Stok KS et al (2015) Cannabidiol, a major non-psychotropic cannabis constituent enhances fracture healing and stimulates lysyl hydroxylase activity in osteoblasts. J Bone Miner 30(10):1905–1913. https://doi.org/10.1002/jbmr.2513

Article  CAS  Google Scholar 

Ihejirika-Lomedico R, Patel K, Daniel BB, David KJ et al (2023) Non-psychoactive cannabidiol prevents osteoporosis in an animal model and increases cell viability, proliferation, and osteogenic gene expression in human skeletal stem and progenitor cells. Calcif Tissue Int 112:716–726. https://doi.org/10.1007/s00223-023-01083-2

Article  PubMed  CAS  Google Scholar 

Yousefzadeh N, Kashfi K, Jeddi S, Ghasemi A. (2020) Ovariectomized rat model of osteoporosis: a practical guide. EXCLI J 19:89–107. https://doi.org/10.17179/excli2019-1990

Raphael-Mizrahi B, Gabet Y (2020) The cannabinoids effect on bone formation and bone healing. Curr Osteoporos Rep 18(5):433–438. https://doi.org/10.1007/s11914-020-00607-1

Article  PubMed  Google Scholar 

Park SB, Lee YJ, Chung CK (2010) Bone mineral density changes after ovariectomy in rats as an osteopenic model: stepwise description of double dorso-lateral approach. J Korean Neurosurg Soc 48(4):309–312. https://doi.org/10.3340/jkns.2010.48.4.309

Article  PubMed  PubMed Central  Google Scholar 

Ke HZ, Jee WSS, Zeng Q, Li M, Lin BY (1993) Prostaglandin E2 increased rat cortical bone mass when administered immediately following ovariectomy. Bone Miner 21:189. https://doi.org/10.3340/jkns.2010.48.4.309

Article  PubMed  CAS  Google Scholar 

Roesch DM (2006) Effects of selective estrogen receptor agonists on food intake and body weight gain in rats. Physiol Behav 87(1):39–44. https://doi.org/10.1016/j.physbeh.2005.08.035

Article  PubMed  CAS  Google Scholar 

Stagi S, Cavalli L, Iurato C, Seminara S, Brandi ML, de Martino M (2013) Bone metabolism in children and adolescents: main characteristics of the determinants of peak bone mass. Clin Cases Miner Bone Metab 10(3):172–179

PubMed  Google Scholar 

Langdahl B, Ferrari S, Dempster DW (2016) Bone modeling and remodeling: potential as therapeutic targets for the treatment of osteoporosis. Ther Adv Musculoskelet Dis 8(6):225–235. https://doi.org/10.1177/1759720X16670154

Article  PubMed  PubMed Central  CAS  Google Scholar 

Tian L, Yang R, Wei L, Liu J, Yang Y, Shao F et al (2017) Prevalence of osteoporosis and related lifestyle and metabolic factors of postmenopausal women and elderly men A cross-sectional study in Gansu province. Northwestern China Med (Baltimore) 96(43):e8294. https://doi.org/10.1097/MD.0000000000008294

Article  Google Scholar 

Saville PD (1969) Changes in skeletal mass and fragility with castration in the rat; a model of osteoporosis. J Am Geriatr Soc 17(2):155–166. https://doi.org/10.1111/j.1532-5415.1969.tb03169.x

Article  PubMed  CAS  Google Scholar 

Jee WS, Yao W (2001) Overview: animal models of osteopenia and osteoporosis. J Musculoskelet Neuronal Interact 1(3):193–207

PubMed  CAS  Google Scholar 

Turner AS (2001) Animal models of osteoporosis—necessity and limitations. Eur Cells Mater 1:66–81. https://doi.org/10.22203/ecm.v001a08

Article  CAS  Google Scholar 

Bliuc D, Nguyen ND, Alarkawi D, Nguyen TV, Eisman JA, Center JR (2015) Accelerated bone loss and increased post-fracture mortality in elderly women and men. Osteoporos Int 26(4):1331–1339. https://doi.org/10.1007/s00198-014-3014-9

Article  PubMed  CAS  Google Scholar 

Martin EA, Ritman EL, Turner RT (2003) Time course of epiphyseal growth plate fusion in rat tibiae. Bone 32(3):261–267. https://doi.org/10.1016/s8756-3282(02)00983-3

Article  PubMed  CAS  Google Scholar 

Francisco JI, Yu Y, Oliver RA, Walsh WR (2011) Relationship between age, skeletal site, and time post-ovariectomy on bone mineral and trabecular microarchitecture in rats. J Orthop Res 29(2):189–196. https://doi.org/10.1002/jor.21217

Article  PubMed  Google Scholar 

Hernandez CJ, Keaveny TM (2006) A biomechanical perspective on bone quality. Bone 39(6):1173–1181. https://doi.org/10.1016/j.bone.2006.06.001

Article  PubMed  PubMed Central  CAS  Google Scholar 

Komori T (2015) Animal models for osteoporosis. Eur J Pharmacol 759:287–294. https://doi.org/10.1016/j.ejphar.2015.03.028

Article  PubMed  CAS  Google Scholar 

Sophocleous A, Landao-Bassonga E, Van’t Hof RJ, Idris AI, Ralston SH (2011) The Type 2 cannabinoid receptor regulates bone mass and ovariectomy-induced bone loss by affecting osteoblast differentiation and bone formation. Endocrinology 152(6):2141–2149. https://doi.org/10.1210/en.2010-0930

Article  PubMed  CAS  Google Scholar 

Bagi CM, Wilkie D, Georgelos K, Williams D, Bertolini D (1997) Morphological and structural characteristics of the proximal femur in human and rat. Bone 21(3):261–267. https://doi.org/10.1016/s8756-3282(97)00121-x

Article  PubMed  CAS  Google Scholar 

Ofek O, Karsak M, Leclerc N, Fogel M, Frenkel B, Wright K et al (2006) Peripheral cannabinoid receptor, CB2, regulates bone mass. Proc Natl Acad Sci U S A 103(3):696–701. https://doi.org/10.1073/pnas.0504187103

Article  PubMed 

留言 (0)

沒有登入
gif