Inhibitors of Nitric Oxide Production from the Seeds of Myristica fragrans: Experimental and Computational Results

Abourashed EA, El-Alfy AT (2016) Chemical diversity and pharmacological significance of the secondary metabolites of nutmeg (Myristica fragrans Houtt.). Phytochem Rev 15:1035–1056. https://doi.org/10.1007/s11101-016-9469-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao GY, Xu W, Yang XW, Gonzalez FJ, Li F (2015) New neolignans from the seeds of Myristica fragrans that inhibit nitric oxide production. Food Chem 173:231–237. https://doi.org/10.1016/j.foodchem.2014.09.170

Article  CAS  PubMed  Google Scholar 

Cuong TD, Hung TM, Na MK, Ha DT, Kim JC, Lee D, Ryoo SW, Lee JH, Choi JS, Min BS (2011) Inhibitory effect on NO production of phenolic compounds from Myristica fragrans. Bioor Med Chem Lett 21:6884–6887. https://doi.org/10.1016/j.bmcl.2011.09.021

Article  CAS  Google Scholar 

Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717. https://doi.org/10.1038/srep42717

Article  PubMed  PubMed Central  Google Scholar 

Ding Y, Fang Y, Moreno J, Ramanujam J, Jarrell M, Brylinski M (2016) Assessing the similarity of ligand binding conformations with the Contact Mode Score. Comput Biol Chem 64:403–413. https://doi.org/10.1016/j.compbiolchem.2016.08.007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iliefski T, Li S, Lundquist K (1998) Synthesis of cinnamaldehydes by oxidation of arylpropenes with 2,3-dichloro-5,6-dicyanoquinone. Acta Chem Scand 52:1177–1182. https://doi.org/10.3891/acta.chem.scand.52-1177

Article  CAS  Google Scholar 

Jagannathan R (2019) Characterization of drug-like chemical space for cytotoxic marine metabolites using multivariate methods. ACS Omega 4:5402–5411. https://doi.org/10.1021/acsomega.8b01764

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jakubec D, Skoda P, Krivak R, Novotny M, Hoksza D (2022) PrankWeb 3: accelerated ligand-binding site predictions for experimental and modelled protein structures. Nucleic Acids Res 50:593–597. https://doi.org/10.1093/nar/gkac389

Article  CAS  Google Scholar 

Jin H, Zhu ZG, Yu PJ, Wang GF, Zhang JY, Li JR, Ai RT, Li ZH, Tian YX, Xu W, Zhang JJ, Wu SG (2012) Myrislignan attenuates lipopolysaccharide-induced inflammation reaction in murine macrophage cells through inhibition of NF-κB signalling pathway activation. Phytother Res 26:1320–1326. https://doi.org/10.1002/ptr.3707

Article  CAS  PubMed  Google Scholar 

Lee JW, Lee SO, Seo JH, Yoo MY, Kwon JW, Choi SU, Lee KR, Kwon DY, Kim YK, Kim YS, Ryu SY (2005) Inhibitory effects of the seeds extract of Myristica fragrans on the proliferation of human tumor cell lines. Kor J Pharmacogn 36:240–244

CAS  Google Scholar 

Lee SJ, Cheong SH, Kim YS, Hwang JW, Kwon HJ, Kang SH, Moon SH, Jeon BT, Park PJ (2013) Antioxidant activity of a novel synthetic hexa-peptide derived from an enzymatic hydrolysate of duck skin by-products. Food Chem Toxicol 62:276–280. https://doi.org/10.1016/j.fct.2013.08.054

Article  CAS  PubMed  Google Scholar 

Lipinski CA (2000) Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 44:235–249. https://doi.org/10.1016/S1056-8719(00)00107-6

Article  CAS  PubMed  Google Scholar 

Mukherjee A, Su A, Rajan K (2021) Deep learning model for identifying critical structural motifs in potential endocrine disruptors. J Chem Inf Model 61:2187–2197. https://doi.org/10.1021/acs.jcim.0c01409

Article  CAS  PubMed  Google Scholar 

Ngo TD, Tran TD, Le MT, Thai KM (2016) Computational predictive models for P-glycoprotein inhibition of in-house chalcone derivatives and drug-bank compounds. Mol Divers 20:945–961. https://doi.org/10.1007/s11030-016-9688-5

Article  CAS  PubMed  Google Scholar 

Nguyen PH, Le TVT, Kang HW, Chae J, Kim SK, Kwon KI, Seo DB, Lee SJ, Oh WK (2010) AMP-activated protein kinase (AMPK) activators from Myristica fragrans (nutmeg) and their anti-obesity effect. Bioor Med Chem Lett 20:4128–4131. https://doi.org/10.1016/j.bmcl.2010.05.067

Article  CAS  Google Scholar 

Nguyen PH, Kang HW, Le TVT, Chae J, Kim SK, Kwon KI, Lim SI, Oh WK (2011) Simple process for the decrease of myristicin content from Myristica fragrans (nutmeg) and its activity with AMP-activated protein kinase (AMPK). J Food Biochem 35:1715–1722. https://doi.org/10.1111/j.1745-4514.2010.00496.x

Article  CAS  Google Scholar 

Park JS, Park JH, Kim KY (2019) Neuroprotective effects of myristargenol A against glutamate-induced apoptotic HT22 cell death. RSC Adv 9:31247. https://doi.org/10.1039/c9ra05408a

Article  CAS  PubMed  PubMed Central  Google Scholar 

Phong NV, Chae HY, Oanh VT, Min BS, Kwon MJ, Kim JA (2023) Cytotoxic activities on human ovarian cancer cell lines by neolignans and diarylnonanoids from the seed of Myristica fragrans Houtt. Nat Prod Sci 29:171–181. https://doi.org/10.20307/nps.2023.29.3.171

Sartorelli P, Young MCM, Kato MJ (1998) Antifungal lignans from the arils of Virola oleifera. Phytochemistry 47:1003–1006. https://doi.org/10.1016/S0031-9422(98)80061-7

Article  CAS  Google Scholar 

Shammika P, Jaseera OT, Hanoof, Shakeer PV (2019) Pharmaceutical formulation and evaluation of herbal Myristica fragrans cream for atopic dermatitis. World J Pharm Res 8:833–848. https://doi.org/10.20959/wjpr201913-16251

Thai KM, Le DP, Tran NVK, Nguyen TTH, Tran TD, Le MT (2015) Computational assay of Zanamivir binding affinity with original and mutant influenza neuraminidase 9 using molecular docking. J Theor Biol 385:31–39. https://doi.org/10.1016/j.jtbi.2015.08.019

Article  CAS  PubMed  Google Scholar 

Thirukumaran P, Shakila Parveen A, Sarojadevi M (2014) Synthesis and copolymerization of fully biobased benzoxazines from renewable resources. ACS Sustainable Chem Eng 2:2790–2801. https://doi.org/10.1021/sc500548c

Article  CAS  Google Scholar 

To DC, Hoang LM, Nguyen HT, Hoa TTV, Thuy NTT, Tran MH, Nguyen PH, Nguyen PDN, Nhan NT, Tram NTT (2023) Dataset on the compounds from the leaves of Vietnamese Machilus thunbergii and their anti-inflammatory activity. Data Brief 51:109713. https://doi.org/10.1016/j.dib.2023.109713

Article  CAS  PubMed  PubMed Central  Google Scholar 

Urzúa A, Freyer AJ, Shamma M (1987) 2,5-diaryl-3,4-dimethyltetrahydrofuranoid lignans. Phytochemistry 26:1509–1511. https://doi.org/10.1016/S0031-9422(00)81846-4

Article  Google Scholar 

Verma NK, Singh AK, Maurya A (2021) Myristica fragrans (Nutmeg): a brief review. EAS J Pharm Pharmacol 3:133–137. https://doi.org/10.36349/easjpp.2021.v03i05.004

Article  Google Scholar 

Wojdasiewicz P, Poniatowski ŁA, Szukiewicz D (2014) The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm 2014:561459. https://doi.org/10.1155/2014/561459

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou HY, Shin EM, Guo LY, Youn UJ, Bae K, Kang SS, Zou LB, Kim YS (2008) Anti-inflammatory activity of 4-methyxyhonokiol is a function of the inhibition of iNOS and COX-2 expression in RAW 264.7 macrophages via NF-κB, JNK and p38 MAPK inactivation. Eur J Pharmacol 586:340–349. https://doi.org/10.1016/j.ejphar.2008.02.044

Article  CAS  PubMed  Google Scholar 

Ziyatdinova G, Ziganshina E, Cong PN, Budnikov H (2016) Ultrasound-assisted micellar extraction of phenolic antioxidants from spices and antioxidant properties of the extracts based on coulometric titration data. Anal Methods 8:7150–7157. https://doi.org/10.1039/C6AY02112C

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif