Park SH, Sul AR, Ko Y, Jang HY, Lee JG (2023) Radiologist’s guide to evaluating publications of clinical research on AI: how we do it. Radiology 308:e230288. https://doi.org/10.1148/radiol.230288
Erickson BJ, Kitamura F (2021) Magician’s corner: 9 performance metrics for machine learning models. Radiol Artif Intell 3:e200126. https://doi.org/10.1148/ryai.2021200126
Article PubMed PubMed Central Google Scholar
Park SH, Han K, Jang HY, Park JE, Lee JG, Kim DW, Choi J (2023) Methods for clinical evaluation of artificial intelligence algorithms for medical diagnosis. Radiology 306:20–31. https://doi.org/10.1148/radiol.220182
Park SY, Park JE, Kim H, Park SH (2021) Review of statistical methods for evaluating the performance of survival or other time-to-event prediction models (from conventional to deep learning approaches). Korean J Radiol 22:1697–1707. https://doi.org/10.3348/kjr.2021.0223
Article PubMed PubMed Central Google Scholar
Chalkidou A, Shokraneh F, Kijauskaite G et al (2022) Recommendations for the development and use of imaging test sets to investigate the test performance of artificial intelligence in health screening. Lancet Digit Health 4:e899–e905. https://doi.org/10.1016/s2589-7500(22)00186-8
Article CAS PubMed Google Scholar
Park SH (2019) Diagnostic case-control versus diagnostic cohort studies for clinical validation of artificial intelligence algorithm performance. Radiology 290:272–273. https://doi.org/10.1148/radiol.2018182294
Yang B, Olsen M, Vali Y, Langendam MW, Takwoingi Y, Hyde CJ, Bossuyt PMM, Leeflang MMG (2021) Study designs for comparative diagnostic test accuracy: a methodological review and classification scheme. J Clin Epidemiol 138:128–138. https://doi.org/10.1016/j.jclinepi.2021.04.013
Park SH, Heo S, Kim B, Lee J, Choi HJ, Sung PS, Choi JI (2023) Targetoid primary liver malignancy in chronic liver disease: prediction of postoperative survival using preoperative mri findings and clinical factors. Korean J Radiol 24:190–203. https://doi.org/10.3348/kjr.2022.0560
Article PubMed PubMed Central Google Scholar
Lee SJ, Park JE, Park SY, Kim YH, Hong CK, Kim JH, Kim HS (2023) Imaging-based versus pathologic survival stratifications of diffuse glioma according to the 2021 WHO classification system. Korean J Radiol 24:772–783. https://doi.org/10.3348/kjr.2022.0919
Article PubMed PubMed Central Google Scholar
Obuchowski NA (2005) Estimating and comparing diagnostic tests’ accuracy when the gold standard is not binary. Acad Radiol 12:1198–1204. https://doi.org/10.1016/j.acra.2005.05.013
He X, Frey E (2009) ROC, LROC, FROC, AFROC: an alphabet soup. J Am Coll Radiol 6:652–655. https://doi.org/10.1016/j.jacr.2009.06.001
Kim PH, Yoon HM, Kim JR et al (2023) Bone age assessment using artificial intelligence in korean pediatric population: a comparison of deep-learning models trained with healthy chronological and greulich-pyle ages as labels. Korean J Radiol 24:1151–1163. https://doi.org/10.3348/kjr.2023.0092
Article PubMed PubMed Central Google Scholar
Raunig DL, McShane LM, Pennello G et al (2015) Quantitative imaging biomarkers: a review of statistical methods for technical performance assessment. Stat Method Med Res 24:27–67. https://doi.org/10.1177/0962280214537344
Han A, Byra M, Heba E, Andre MP, Erdman JW Jr, Loomba R, Sirlin CB, O’Brien WD Jr (2020) Noninvasive diagnosis of nonalcoholic fatty liver disease and quantification of liver fat with radiofrequency ultrasound data using one-dimensional convolutional neural networks. Radiology 295:342–350. https://doi.org/10.1148/radiol.2020191160
Hou Z, Gao S, Liu J, Yin Y, Zhang L, Han Y, Yan J, Li S (2023) Clinical evaluation of deep learning-based automatic clinical target volume segmentation: a single-institution multi-site tumor experience. Radiol Med 128:1250–1261. https://doi.org/10.1007/s11547-023-01690-x
Do S, Song KD, Chung JW (2020) Basics of deep learning: a radiologist’s guide to understanding published radiology articles on deep learning. Korean J Radiol 21:33–41. https://doi.org/10.3348/kjr.2019.0312
Hwang HJ, Kim H, Seo JB et al (2023) Generative adversarial network-based image conversion among different computed tomography protocols and vendors: effects on accuracy and variability in quantifying regional disease patterns of interstitial lung disease. Korean J Radiol 24:807–820. https://doi.org/10.3348/kjr.2023.0088
Article PubMed PubMed Central Google Scholar
Lee SB, Hong Y, Cho YJ, Jeong D, Lee J, Yoon SH, Lee S, Choi YH, Cheon JE (2023) Deep learning-based computed tomography image standardization to improve generalizability of deep learning-based hepatic segmentation. Korean J Radiol 24:294–304. https://doi.org/10.3348/kjr.2022.0588
Article PubMed PubMed Central Google Scholar
Bhayana R (2024) Chatbots and large language models in radiology: a practical primer for clinical and research applications. Radiology 310:e232756. https://doi.org/10.1148/radiol.232756
Jung KH (2023) Uncover this tech term: foundation model. Korean J Radiol 24:1038–1041. https://doi.org/10.3348/kjr.2023.0790
Article PubMed PubMed Central Google Scholar
Kim S, Lee CK, Kim SS (2024) Large language models: a guide for radiologists. Korean J Radiol 25:126–133. https://doi.org/10.3348/kjr.2023.0997
Article PubMed PubMed Central Google Scholar
Wolterink JM, Mukhopadhyay A, Leiner T, Vogl TJ, Bucher AM, Išgum I (2021) Generative adversarial networks: a primer for radiologists. Radiographics 41:840–857. https://doi.org/10.1148/rg.2021200151
Kim K, Cho K, Jang R, Kyung S, Lee S, Ham S, Choi E, Hong GS, Kim N (2024) Updated primer on generative artificial intelligence and large language models in medical imaging for medical professionals. Korean J Radiol 25:224–242. https://doi.org/10.3348/kjr.2023.0818
Article PubMed PubMed Central Google Scholar
Hong GS, Jang M, Kyung S et al (2023) Overcoming the challenges in the development and implementation of artificial intelligence in radiology: a comprehensive review of solutions beyond supervised learning. Korean J Radiol 24:1061–1080. https://doi.org/10.3348/kjr.2023.0393
Article PubMed PubMed Central Google Scholar
Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13:600–612. https://doi.org/10.1109/tip.2003.819861
Shiri I, Akhavanallaf A, Sanaat A et al (2021) Ultra-low-dose chest CT imaging of COVID-19 patients using a deep residual neural network. Eur Radiol 31:1420–1431. https://doi.org/10.1007/s00330-020-07225-6
Article CAS PubMed Google Scholar
Jensen CT, Gupta S, Saleh MM, Liu X, Wong VK, Salem U, Qiao W, Samei E, Wagner-Bartak NA (2022) Reduced-dose deep learning reconstruction for abdominal CT of liver metastases. Radiology 303:90–98. https://doi.org/10.1148/radiol.211838
Maennlin S, Wessling D, Herrmann J, Almansour H, Nickel D, Kannengiesser S, Afat S, Gassenmaier S (2023) Application of deep learning-based super-resolution to T1-weighted postcontrast gradient echo imaging of the chest. Radiol Med 128:184–190. https://doi.org/10.1007/s11547-022-01587-1
Article PubMed PubMed Central Google Scholar
Park J, Shin J, Min IK, Bae H, Kim YE, Chung YE (2022) Image quality and lesion detectability of lower-dose abdominopelvic ct obtained using deep learning image reconstruction. Korean J Radiol 23:402–412. https://doi.org/10.3348/kjr.2021.0683
留言 (0)