Cancer associated fibroblasts and metabolic reprogramming: unraveling the intricate crosstalk in tumor evolution

B. Faubert, A. Solmonson, R.J. DeBerardinis, Metabolic reprogramming and cancer progression, Science (New York, N.Y.), 368 (2020). https://doi.org/10.1126/science.aaw5473

Coffey NJ, Simon MC. Metabolic alterations in hereditary and sporadic renal cell carcinoma. Nat Rev Nephrol. 2024;20:233–50. https://doi.org/10.1038/s41581-023-00800-2.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kelly B, O’Neill LA. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res. 2015;25:771–84. https://doi.org/10.1038/cr.2015.68.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gupta S, Roy A, Dwarakanath BS. Metabolic cooperation and competition in the tumor microenvironment: implications for therapy. Front Oncol. 2017;7:68. https://doi.org/10.3389/fonc.2017.00068.

Article  PubMed  PubMed Central  Google Scholar 

Zhang F, Liu H, Duan M, Wang G, Zhang Z, Wang Y, Jiang X, et al. Crosstalk among m(6)A RNA methylation, hypoxia and metabolic reprogramming in TME: from immunosuppressive microenvironment to clinical application. J Hematol Oncol. 2022;15:84. https://doi.org/10.1186/s13045-022-01304-5.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Sun C, Wang A, Zhou Y, Chen P, Wang X, Huang J, He J, et al. Spatially resolved multi-omics highlights cell-specific metabolic remodeling and interactions in gastric cancer. Nat Commun. 2023;14:2692. https://doi.org/10.1038/s41467-023-38360-5.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Pandkar MR, Dhamdhere SG, Shukla S. Oxygen gradient and tumor heterogeneity: the chronicle of a toxic relationship, Biochimica et biophysica acta. Rev Cancer. 2021;1876: 188553. https://doi.org/10.1016/j.bbcan.2021.188553.

Article  CAS  Google Scholar 

Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab. 2016;23:27–47. https://doi.org/10.1016/j.cmet.2015.12.006.

Article  PubMed  PubMed Central  CAS  Google Scholar 

van Weverwijk A, Koundouros N, Iravani M, Ashenden M, Gao Q, Poulogiannis G, Isacke CM, et al. Metabolic adaptability in metastatic breast cancer by AKR1B10-dependent balancing of glycolysis and fatty acid oxidation. Nat Commun. 2019;10:2698. https://doi.org/10.1038/s41467-019-10592-4.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wu Y, Yang S, Ma J, Chen Z, Song G, Rao D, Gao Q, et al. Spatiotemporal immune landscape of colorectal cancer liver metastasis at single-cell level. Cancer Discov. 2022;12:134–53. https://doi.org/10.1158/2159-8290.Cd-21-0316.

Article  PubMed  CAS  Google Scholar 

Chen X, Chen W, Zhao Y, Wang Q, Wang W, Xiang Y, Zhou J, et al. Interplay of Helicobacter pylori, fibroblasts, and cancer cells induces fibroblast activation and serpin E1 expression by cancer cells to promote gastric tumorigenesis. J Transl Med. 2022;20:322. https://doi.org/10.1186/s12967-022-03537-x.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Pich-Bavastro C, Yerly L, Di Domizio J, Tissot-Renaud S, Gilliet M, Kuonen F. Activin A-mediated polarization of cancer-associated fibroblasts and macrophages confers resistance to checkpoint immunotherapy in skin cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2023;29:3498–513. https://doi.org/10.1158/1078-0432.Ccr-23-0219.

Article  CAS  Google Scholar 

Li Q, Lv X, Han C, Kong Y, Dai Z, Huo D, Wu X, et al. Enhancer reprogramming promotes the activation of cancer-associated fibroblasts and breast cancer metastasis. Theranostics. 2022;12:7491–508. https://doi.org/10.7150/thno.75853.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Huang X, Wang L, Guo H, Zhang W, Shao Z. Single-cell transcriptomics reveals the regulative roles of cancer associated fibroblasts in tumor immune microenvironment of recurrent osteosarcoma. Theranostics. 2022;12:5877–87. https://doi.org/10.7150/thno.73714.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kao KC, Vilbois S, Tsai CH, Ho PC. Metabolic communication in the tumour-immune microenvironment. Nat Cell Biol. 2022;24:1574–83. https://doi.org/10.1038/s41556-022-01002-x.

Article  PubMed  CAS  Google Scholar 

Liang T, Tao T, Wu K, Liu L, Xu W, Zhou D, Wu S, et al. Cancer-associated fibroblast-induced remodeling of tumor microenvironment in recurrent bladder cancer. Adv Sci Weinheim, Baden-Wurttemberg Germany. 2023;10:2303230. https://doi.org/10.1002/advs.202303230.

Article  CAS  Google Scholar 

Timperi E, Gueguen P, Molgora M, Magagna I, Kieffer Y, Lopez-Lastra S, Romano E, et al. Lipid-associated macrophages are induced by cancer-associated fibroblasts and mediate immune suppression in breast cancer. Can Res. 2022;82:3291–306. https://doi.org/10.1158/0008-5472.Can-22-1427.

Article  CAS  Google Scholar 

Zhu Y, Li X, Wang L, Hong X, Yang J. Metabolic reprogramming and crosstalk of cancer-related fibroblasts and immune cells in the tumor microenvironment. Front Endocrinol. 2022;13: 988295. https://doi.org/10.3389/fendo.2022.988295.

Article  Google Scholar 

Kitamura F, Semba T, Yasuda-Yoshihara N, Yamada K, Nishimura A, Yamasaki J, Ishimoto T, et al. Cancer-associated fibroblasts reuse cancer-derived lactate to maintain a fibrotic and immunosuppressive microenvironment in pancreatic cancer. JCI Insight. 2023. https://doi.org/10.1172/jci.insight.163022.

Article  PubMed  PubMed Central  Google Scholar 

Öhlund D, Handly-Santana A, Biffi G, Elyada E, Almeida AS, Ponz-Sarvise M, Tuveson DA, et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med. 2017;214:579–96. https://doi.org/10.1084/jem.20162024.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhou Y, Ren H, Dai B, Li J, Shang L, Huang J, Shi X. Hepatocellular carcinoma-derived exosomal miRNA-21 contributes to tumor progression by converting hepatocyte stellate cells to cancer-associated fibroblasts. J Exp Clin Cancer Res CR. 2018;37:324. https://doi.org/10.1186/s13046-018-0965-2.

Article  PubMed  CAS  Google Scholar 

Zhang Q, Chai S, Wang W, Wan C, Zhang F, Li Y, Wang F. Macrophages activate mesenchymal stem cells to acquire cancer-associated fibroblast-like features resulting in gastric epithelial cell lesions and malignant transformation in vitro. Oncol Lett. 2019;17:747–56. https://doi.org/10.3892/ol.2018.9703.

Article  PubMed  CAS  Google Scholar 

Xue C, Gao Y, Li X, Zhang M, Yang Y, Han Q, Zhao RC, et al. Mesenchymal stem cells derived from adipose accelerate the progression of colon cancer by inducing a MT-CAFs phenotype via TRPC3/NF-KB axis. Stem Cell Res Ther. 2022;13:335. https://doi.org/10.1186/s13287-022-03017-5.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Li X, Sun Z, Peng G, Xiao Y, Guo J, Wu B, Wang X, et al. Single-cell RNA sequencing reveals a pro-invasive cancer-associated fibroblast subgroup associated with poor clinical outcomes in patients with gastric cancer. Theranostics. 2022;12:620–38. https://doi.org/10.7150/thno.60540.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Elyada E, Bolisetty M, Laise P, Flynn WF, Courtois ET, Burkhart RA, Tuveson DA, et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 2019;9:1102–23. https://doi.org/10.1158/2159-8290.Cd-19-0094.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wang H, Li N, Liu Q, Guo J, Pan Q, Cheng B, Qin J, et al. Antiandrogen treatment induces stromal cell reprogramming to promote castration resistance in prostate cancer. Cancer Cell. 2023;41:1345-1362.e1349. https://doi.org/10.1016/j.ccell.2023.05.016.

Article  PubMed  CAS  Google Scholar 

Zheng S, Hu C, Lin H, Li G, Xia R, Zhang X, Chen R, et al. Circcul2 induces an inflammatory CAF phenotype in pancreatic ductal adenocarcinoma via the activation of the MyD88-dependent NF-κB signaling pathway. J Exp Clin Cancer Res CR. 2022;41:71.

留言 (0)

沒有登入
gif