B. Faubert, A. Solmonson, R.J. DeBerardinis, Metabolic reprogramming and cancer progression, Science (New York, N.Y.), 368 (2020). https://doi.org/10.1126/science.aaw5473
Coffey NJ, Simon MC. Metabolic alterations in hereditary and sporadic renal cell carcinoma. Nat Rev Nephrol. 2024;20:233–50. https://doi.org/10.1038/s41581-023-00800-2.
Article PubMed PubMed Central CAS Google Scholar
Kelly B, O’Neill LA. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res. 2015;25:771–84. https://doi.org/10.1038/cr.2015.68.
Article PubMed PubMed Central CAS Google Scholar
Gupta S, Roy A, Dwarakanath BS. Metabolic cooperation and competition in the tumor microenvironment: implications for therapy. Front Oncol. 2017;7:68. https://doi.org/10.3389/fonc.2017.00068.
Article PubMed PubMed Central Google Scholar
Zhang F, Liu H, Duan M, Wang G, Zhang Z, Wang Y, Jiang X, et al. Crosstalk among m(6)A RNA methylation, hypoxia and metabolic reprogramming in TME: from immunosuppressive microenvironment to clinical application. J Hematol Oncol. 2022;15:84. https://doi.org/10.1186/s13045-022-01304-5.
Article PubMed PubMed Central CAS Google Scholar
Sun C, Wang A, Zhou Y, Chen P, Wang X, Huang J, He J, et al. Spatially resolved multi-omics highlights cell-specific metabolic remodeling and interactions in gastric cancer. Nat Commun. 2023;14:2692. https://doi.org/10.1038/s41467-023-38360-5.
Article PubMed PubMed Central CAS Google Scholar
Pandkar MR, Dhamdhere SG, Shukla S. Oxygen gradient and tumor heterogeneity: the chronicle of a toxic relationship, Biochimica et biophysica acta. Rev Cancer. 2021;1876: 188553. https://doi.org/10.1016/j.bbcan.2021.188553.
Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab. 2016;23:27–47. https://doi.org/10.1016/j.cmet.2015.12.006.
Article PubMed PubMed Central CAS Google Scholar
van Weverwijk A, Koundouros N, Iravani M, Ashenden M, Gao Q, Poulogiannis G, Isacke CM, et al. Metabolic adaptability in metastatic breast cancer by AKR1B10-dependent balancing of glycolysis and fatty acid oxidation. Nat Commun. 2019;10:2698. https://doi.org/10.1038/s41467-019-10592-4.
Article PubMed PubMed Central CAS Google Scholar
Wu Y, Yang S, Ma J, Chen Z, Song G, Rao D, Gao Q, et al. Spatiotemporal immune landscape of colorectal cancer liver metastasis at single-cell level. Cancer Discov. 2022;12:134–53. https://doi.org/10.1158/2159-8290.Cd-21-0316.
Article PubMed CAS Google Scholar
Chen X, Chen W, Zhao Y, Wang Q, Wang W, Xiang Y, Zhou J, et al. Interplay of Helicobacter pylori, fibroblasts, and cancer cells induces fibroblast activation and serpin E1 expression by cancer cells to promote gastric tumorigenesis. J Transl Med. 2022;20:322. https://doi.org/10.1186/s12967-022-03537-x.
Article PubMed PubMed Central CAS Google Scholar
Pich-Bavastro C, Yerly L, Di Domizio J, Tissot-Renaud S, Gilliet M, Kuonen F. Activin A-mediated polarization of cancer-associated fibroblasts and macrophages confers resistance to checkpoint immunotherapy in skin cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2023;29:3498–513. https://doi.org/10.1158/1078-0432.Ccr-23-0219.
Li Q, Lv X, Han C, Kong Y, Dai Z, Huo D, Wu X, et al. Enhancer reprogramming promotes the activation of cancer-associated fibroblasts and breast cancer metastasis. Theranostics. 2022;12:7491–508. https://doi.org/10.7150/thno.75853.
Article PubMed PubMed Central CAS Google Scholar
Huang X, Wang L, Guo H, Zhang W, Shao Z. Single-cell transcriptomics reveals the regulative roles of cancer associated fibroblasts in tumor immune microenvironment of recurrent osteosarcoma. Theranostics. 2022;12:5877–87. https://doi.org/10.7150/thno.73714.
Article PubMed PubMed Central CAS Google Scholar
Kao KC, Vilbois S, Tsai CH, Ho PC. Metabolic communication in the tumour-immune microenvironment. Nat Cell Biol. 2022;24:1574–83. https://doi.org/10.1038/s41556-022-01002-x.
Article PubMed CAS Google Scholar
Liang T, Tao T, Wu K, Liu L, Xu W, Zhou D, Wu S, et al. Cancer-associated fibroblast-induced remodeling of tumor microenvironment in recurrent bladder cancer. Adv Sci Weinheim, Baden-Wurttemberg Germany. 2023;10:2303230. https://doi.org/10.1002/advs.202303230.
Timperi E, Gueguen P, Molgora M, Magagna I, Kieffer Y, Lopez-Lastra S, Romano E, et al. Lipid-associated macrophages are induced by cancer-associated fibroblasts and mediate immune suppression in breast cancer. Can Res. 2022;82:3291–306. https://doi.org/10.1158/0008-5472.Can-22-1427.
Zhu Y, Li X, Wang L, Hong X, Yang J. Metabolic reprogramming and crosstalk of cancer-related fibroblasts and immune cells in the tumor microenvironment. Front Endocrinol. 2022;13: 988295. https://doi.org/10.3389/fendo.2022.988295.
Kitamura F, Semba T, Yasuda-Yoshihara N, Yamada K, Nishimura A, Yamasaki J, Ishimoto T, et al. Cancer-associated fibroblasts reuse cancer-derived lactate to maintain a fibrotic and immunosuppressive microenvironment in pancreatic cancer. JCI Insight. 2023. https://doi.org/10.1172/jci.insight.163022.
Article PubMed PubMed Central Google Scholar
Öhlund D, Handly-Santana A, Biffi G, Elyada E, Almeida AS, Ponz-Sarvise M, Tuveson DA, et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med. 2017;214:579–96. https://doi.org/10.1084/jem.20162024.
Article PubMed PubMed Central CAS Google Scholar
Zhou Y, Ren H, Dai B, Li J, Shang L, Huang J, Shi X. Hepatocellular carcinoma-derived exosomal miRNA-21 contributes to tumor progression by converting hepatocyte stellate cells to cancer-associated fibroblasts. J Exp Clin Cancer Res CR. 2018;37:324. https://doi.org/10.1186/s13046-018-0965-2.
Article PubMed CAS Google Scholar
Zhang Q, Chai S, Wang W, Wan C, Zhang F, Li Y, Wang F. Macrophages activate mesenchymal stem cells to acquire cancer-associated fibroblast-like features resulting in gastric epithelial cell lesions and malignant transformation in vitro. Oncol Lett. 2019;17:747–56. https://doi.org/10.3892/ol.2018.9703.
Article PubMed CAS Google Scholar
Xue C, Gao Y, Li X, Zhang M, Yang Y, Han Q, Zhao RC, et al. Mesenchymal stem cells derived from adipose accelerate the progression of colon cancer by inducing a MT-CAFs phenotype via TRPC3/NF-KB axis. Stem Cell Res Ther. 2022;13:335. https://doi.org/10.1186/s13287-022-03017-5.
Article PubMed PubMed Central CAS Google Scholar
Li X, Sun Z, Peng G, Xiao Y, Guo J, Wu B, Wang X, et al. Single-cell RNA sequencing reveals a pro-invasive cancer-associated fibroblast subgroup associated with poor clinical outcomes in patients with gastric cancer. Theranostics. 2022;12:620–38. https://doi.org/10.7150/thno.60540.
Article PubMed PubMed Central CAS Google Scholar
Elyada E, Bolisetty M, Laise P, Flynn WF, Courtois ET, Burkhart RA, Tuveson DA, et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 2019;9:1102–23. https://doi.org/10.1158/2159-8290.Cd-19-0094.
Article PubMed PubMed Central CAS Google Scholar
Wang H, Li N, Liu Q, Guo J, Pan Q, Cheng B, Qin J, et al. Antiandrogen treatment induces stromal cell reprogramming to promote castration resistance in prostate cancer. Cancer Cell. 2023;41:1345-1362.e1349. https://doi.org/10.1016/j.ccell.2023.05.016.
Article PubMed CAS Google Scholar
Zheng S, Hu C, Lin H, Li G, Xia R, Zhang X, Chen R, et al. Circcul2 induces an inflammatory CAF phenotype in pancreatic ductal adenocarcinoma via the activation of the MyD88-dependent NF-κB signaling pathway. J Exp Clin Cancer Res CR. 2022;41:71.
留言 (0)