Harnessing green tide Ulva biomass for carbon dioxide sequestration

Abergel C, Legendre M, Claverie J-M (2015) The rapidly expanding universe of giant viruses: mimivirus, pandoravirus, pithovirus and mollivirus. FEMS Microbiol Rev 39:779–796. https://doi.org/10.1093/femsre/fuv037

Article  CAS  Google Scholar 

Aravind S, Kumar PS, Kumar NS, Siddarth N (2020) Conversion of green algal biomass into bioenergy by pyrolysis. A review. Environ Chem Lett 18:829–849. https://doi.org/10.1007/s10311-020-00990-2

Article  CAS  Google Scholar 

Bach Q-V, Chen W-H (2017) A comprehensive study on pyrolysis kinetics of microalgal biomass. Energy Convers Manag 131:109–116. https://doi.org/10.1016/j.enconman.2016.10.077

Article  CAS  Google Scholar 

Balina K, Romagnoli F, Blumberga D (2017) Seaweed biorefinery concept for sustainable use of marine resources. Energy Procedia 128:504–511. https://doi.org/10.1016/j.egypro.2017.09.067

Article  Google Scholar 

Barakat KM, El-Sayed HS, Khairy HM, El-Sheikh MA, Al-Rashed SA, Arif IA, Elshobary ME (2021) Effects of ocean acidification on the growth and biochemical composition of a green alga (Ulva fasciata) and its associated microbiota. Saudi J Biol Sci 28:5106–5114. https://doi.org/10.1016/j.sjbs.2021.05.029

Article  CAS  Google Scholar 

Bastiaens I, Postnikov E (2017) Greening up: the effects of environmental standards in EU and US trade agreements. Environ Polit 26:847–869. https://doi.org/10.1080/09644016.2017.1338213

Article  Google Scholar 

Bastiaens L, Van Roy S, Thomassen G, Elst K (2017) Biorefinery of algae: technical and economic considerations. In: Gonzalez-Fernandez C, Muñoz R (eds) Microalgae-Based Biofuels and Bioproducts, 1st edn. Woodhead Publishing, Cambridge, pp 27–345

Google Scholar 

Beach KS, Smith CM, Michael T, Shin HW (1995) Photosynthesis in reproductive unicells of Ulva fasciata and Enteromorpha flexuosa: implications for ecological success. Mar Ecol Prog Ser 125:229–237

Article  Google Scholar 

Ben-Ari T, Neori A, Ben-Ezra D, Shauli L, Odintsov V, Shpigel M (2014) Management of Ulva lactuca as a biofilter of mariculture effluents in IMTA system. Aquaculture 434:493–498. https://doi.org/10.1016/j.aquaculture.2014.08.034

Article  Google Scholar 

Bhatt A, Khanchandani M, Rana MS, Prajapati SK (2022) Techno-economic analysis of microalgae cultivation for commercial sustainability: a state-of-the-art review. J Clean Prod 370:133456. https://doi.org/10.1016/j.jclepro.2022.133456

Article  CAS  Google Scholar 

Bikker P, van Krimpen MM, van Wikselaar P, Houweling-Tan B, Scaccia N, van Hal JW, Huijgen WJJ, Cone JW, López-Contreras AM (2016) Biorefinery of the green seaweed Ulva lactuca to produce animal feed, chemicals and biofuels. J Appl Phycol 28:3511–3525. https://doi.org/10.1007/s10811-016-0842-3

Article  CAS  Google Scholar 

Bolton JJ, Robertson-Andersson DV, Shuuluka D, Kandjengo L (2009) Growing Ulva (Chlorophyta) in integrated systems as a commercial crop for abalone feed in South Africa: a SWOT analysis. J Appl Phycol 21:575–583. https://doi.org/10.1007/s10811-008-9385-6

Article  Google Scholar 

Borowitzka MA, Moheimani NR (2013) Algae for Biofuels and Energy. Springer, Netherlands, Dordrecht

Book  Google Scholar 

Bruton T, Lyons H, Lerat Y, Stanley M, Rasmussen M (2009) A review of the potential of marine algae as a source of biofuel in Ireland, Report prepared for Sustainable Energy Ireland. Sustainable Energy Ireland – SEI, Dublin

Buck BH, Troell MF, Krause G, Angel DL, Grote B, Chopin T (2018) State of the art and challenges for offshore integrated multi-trophic aquaculture (IMTA). Front Mar Sci 5:165. https://doi.org/10.3389/fmars.2018.00165

Article  Google Scholar 

Califano G, Kwantes M, Abreu MH, Costa R, Wichard T (2020) Cultivating the macroalgal holobiont: effects of integrated multi-trophic aquaculture on the microbiome of Ulva rigida (Chlorophyta). Front Mar Sci 7:52. https://doi.org/10.3389/fmars.2020.00052

Article  Google Scholar 

Cappello V, Marchetti L, Parlanti P, Landi S, Tonazzini I, Cecchini M, Piazza V, Gemmi M (2016) Ultrastructural characterization of the lower motor system in a mouse model of Krabbe disease. Sci Rep 6:1. https://doi.org/10.1038/s41598-016-0001-8

Article  CAS  Google Scholar 

Cardoso C, Martinho JP, Lopes PA, Martins S, Correia J, Afonso C, Alarcón FJ, González-Fernández MJ, Pinto RM, Prates JA, Bandarra NM, Guil-Guerrero JL (2018) Stearidonic acid combined with alpha-linolenic acid improves lipemic and neurological markers in a rat model subject to a hypercaloric diet. Prostaglandins Leukot Essent Fatty Acids 135:137–146. https://doi.org/10.1016/j.plefa.2018.07.010

Article  CAS  Google Scholar 

Cardoso SM, Carvalho LG, Silva PJ, Rodrigues MS, Pereira OR, Pereira L (2014) Bioproducts from seaweeds: a review with special focus on the Iberian Peninsula. Curr Org Chem 18:896–917. https://doi.org/10.2174/138527281807140515154116

Article  CAS  Google Scholar 

Chen Z, Liu M, Yang Y, Bi M, Li M, Liu W (2022) Environmental and economic impacts of different disposal options for Ulva prolifera green tide in the yellow Sea, China. ACS Sustain Chem Eng 10:11483–11492. https://doi.org/10.1021/acssuschemeng.2c02638

Article  CAS  Google Scholar 

Cui J, Monotilla AP, Zhu W, Takano Y, Shimada S, Ichihara K, Matsui T, He P, Hiraoka M (2018) Taxonomic reassessment of Ulva prolifera (Ulvophyceae, Chlorophyta) based on specimens from the type locality and Yellow Sea green tides. Phycologia 57:692–704. https://doi.org/10.2216/17-139.1

Article  CAS  Google Scholar 

DeAngelo J, Saenz BT, Arzeno-Soltero IB, Frieder CA, Long MC, Hamman J, Davis KA, Davis SJ (2023) Economic and biophysical limits to seaweed farming for climate change mitigation. Nat Plants 9:45–57. https://doi.org/10.1038/s41477-022-01305-9

Article  Google Scholar 

Dominguez H, Loret EP (2019) Ulva lactuca, a source of troubles and potential riches. Mar Drugs 17:357. https://doi.org/10.3390/md17060357

Article  CAS  Google Scholar 

Doney SC, Busch DS, Cooley SR, Kroeker KJ (2020) The impacts of ocean acidification on marine ecosystems and reliant human communities. Annu Rev Environ Resour 45:83–112. https://doi.org/10.1146/annurev-environ-012320-083019

Article  Google Scholar 

Duarte CM, Wu J, Xiao X, Bruhn A, Krause-Jensen D (2017) Can seaweed farming play a role in climate change mitigation and adaptation? Front Mar Sci 4:100. https://doi.org/10.3389/fmars.2017.00100

Article  Google Scholar 

Filote C, Santos SCR, Popa VI, Botelho CMS, Volf I (2021) Biorefinery of marine macroalgae into high-tech bioproducts: a review. Environ Chem Lett 19:969–1000. https://doi.org/10.1007/s10311-020-01124-4

Article  CAS  Google Scholar 

Food Agriculture Organization of the United Nations (2018) Meeting the sustainable development goals. State World Fish Aquacult. Food and Agriculture Organization of the United Nations, Rome: 227

Friedlander M (2008) Israeli R & D activities in seaweed cultivation. Isr J Plant Sci 56:15–28. https://doi.org/10.1560/IJPS.56.1-2.15

Article  CAS  Google Scholar 

Fujita R, Augyte S, Bender J, Brittingham P, Buschmann AH, Chalfin M, Collins J, Davis KA, Gallagher JB, Gentry R, Gruby RL, Kleisner K, Moritsch M, Price N, Roberson L, Taylor J, Yarish C (2023) Seaweed blue carbon: ready or not? Mar Policy 155:105747. https://doi.org/10.1016/j.marpol.2023.105747

Article  Google Scholar 

Gajaria TK, Suthar P, Baghel RS, Balar NB, Sharnagat P, Mantri VA, Reddy CRK (2017) Integration of protein extraction with a stream of byproducts from marine macroalgae: a model forms the basis for marine bioeconomy. Bioresour Technol 243:867–873. https://doi.org/10.1016/j.biortech.2017.06.149

Article  CAS  Google Scholar 

Gallucci M (2021) The ammonia solution: ammonia engines and fuel cells in cargo ships could slash their carbon emissions. IEEE Spectr 58:44–50. https://doi.org/10.1109/MSPEC.2021.9370109

Article  Google Scholar 

Gao G, Clare AS, Rose C, Caldwell GS (2017) Eutrophication and warming-driven green tides (Ulva rigida) are predicted to increase under future climate change scenarios. Mar Pollut Bull 114:439–447. https://doi.org/10.1016/j.marpolbul.2016.10.003

Article  CAS  Google Scholar 

Gao G, Clare AS, Rose C, Caldwell GS (2018) Ulva rigida in the future ocean: potential for carbon capture, bioremediation and biomethane production. GCB Bioenergy 10:39–51. https://doi.org/10.1111/gcbb.12465

Article  CAS  Google Scholar 

Geertz-Hansen O, Sand-Jensen K (1992) Growth rates and photon yield of growth in natural populations of a marine macroalga Ulva lactuca. Mar Ecol Prog Ser 81:179–183

Article  Google Scholar 

Glasson CRK, Sims IM, Carnachan SM, de Nys R, Magnusson M (2017) A cascading biorefinery process targeting sulfated polysaccharides (ulvan) from Ulva ohnoi. Algal Res 27:383–391. https://doi.org/10.1016/j.algal.2017.07.001

Article  Google Scholar 

Green-Gavrielidis LA, MacKechnie F, Thornber CS, Gomez-Chiarri M (2018) Bloom-forming macroalgae (Ulva spp.) inhibit the growth of co-occurring macroalgae and decrease eastern oyster larval survival. Mar Ecol Prog Ser 595:27–37. https://doi.org/10.3354/meps12556

Article  CAS  Google Scholar 

Greene JM, Gulden J, Wood G, Huesemann M, Quinn JC (2020) Techno-economic analysis and global warming potential of a novel offshore macroalgae biorefinery. Algal Res 51:102032.

留言 (0)

沒有登入
gif