Germacrone, isolated from Curcuma wenyujin, inhibits melanin synthesis through the regulation of the MAPK signaling pathway

Pavan WJ, Sturm RA (2019) The genetics of human skin and hair pigmentation. Annu Rev Genomics Hum Genet 20:41–72. https://doi.org/10.1146/annurev-genom-083118-015230

Article  CAS  PubMed  Google Scholar 

An XH, Lv JP, Wang FF (2022) Pterostilbene inhibits melanogenesis, melanocyte dendricity and melanosome transport through cAMP/PKA/CREB pathway. Eur J Pharmacol 932:175231. https://doi.org/10.1016/j.ejphar.2022.175231

Article  CAS  PubMed  Google Scholar 

Tang H, Yang L, Wu L et al (2021) Kaempferol, the melanogenic component of sanguisorba officinalis, enhances dendricity and melanosome maturation/transport in melanocytes. J Pharmacol Sci 147(4):348–357. https://doi.org/10.1016/j.jphs.2021.08.009

Article  CAS  PubMed  Google Scholar 

Jeong HS, Gu GE, Jo AR et al (2015) Baicalin-induced Akt activation decreases melanogenesis through downregulation of microphthalmia-associated transcription factor and tyrosinase. Eur J Pharmacol 761:19–27. https://doi.org/10.1016/j.ejphar.2015.04.028

Article  CAS  PubMed  Google Scholar 

Liu F, Qu LK, Li H et al (2022) Advances in biomedical fFunctions of natural whitening substances in the treatment of skin pigmentation diseases. Pharmaceutics 14(11):2308. https://doi.org/10.3390/pharmaceutics14112308

Article  CAS  PubMed  PubMed Central  Google Scholar 

D’Mello S, Finlay GJ, Baguley BC, Askarian-Amiri ME (2016) Signaling pathways in melanogenesis. Int J Mol Sci 17(7):1144. https://doi.org/10.3390/ijms17071144

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hong C, Yang LL, Zhang YF, Li YM, Wu HL (2022) Epimedium brevicornum Maxim. extract exhibits pigmentation by melanin biosynthesis and melanosome biogenesis transfer. Front Pharmacol 13:963160. https://doi.org/10.3389/fphar.2022.963160

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tu CX, Lin M, Lu SS, Qi XY, Zhang RX, Zhang YY (2012) Curcumin inhibits melanogenesis in human melanocytes. Phytother Res 26(2):174–179. https://doi.org/10.1002/ptr.3517

Article  CAS  PubMed  Google Scholar 

Lv JP, Yang Y, Jia BY, Li SQ, Zhang XM, Gao RY (2021) The inhibitory effect of curcumin derivative J147 on melanogenesis and melanosome transport by facilitating ERK-mediated MITF degradation. Front Pharmacol 12:783730. https://doi.org/10.3389/fphar.2021.783730

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou SH, Zeng HL, Huang JH et al (2021) Epigenetic regulation of melanogenesis. Ageing Res Rev 69:101349. https://doi.org/10.1016/j.arr.2021.101349

Article  CAS  PubMed  Google Scholar 

Liu JZ, Jiang R, Zhou JY et al (2021) Salicylic acid in ginseng root alleviates skin hyperpigmentation disorders by inhibiting melanogenesis and melanosome transport. Eur J Pharmacol 910:174498. https://doi.org/10.1016/j.ejphar.2021.174458

Article  CAS  Google Scholar 

Ishida M, Arai SP, Ohbayashi N, Fukuda M (2014) The GTPase-deficient Rab 27A(Q78L) mutant inhibits melanosome transport in melanocytes through trapping of Rab27A effector protein Slac2-a/melanophilin in their cytosol. J Biol Chem 289(16):11059–11067. https://doi.org/10.1074/jbc.M114.552281

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang YP, Li Z, Wu W et al (2022) TRPA1 promotes melanosome phagocytosis in keratinocytes via PAR-2/ CYLD axis. J Dermatol Sci 106(3):181–188. https://doi.org/10.1016/j.jdermsci.2022.05.005

Article  CAS  PubMed  Google Scholar 

Li YH, Wu YC, Li YM, Guo FJ (2021) Review of the traditional uses, phytochemistry, and pharmacology of Curcuma wenyujin YH Chen et C Ling. J Ethnopharmacol 269:113689. https://doi.org/10.1016/j.jep.2020.113689

Article  CAS  PubMed  Google Scholar 

Li YH, Wang H, Wang H, Wu YC, Li YM, Guo FJ (2022) Nine new sesquiterpenes from Curcuma wenyujin rhizomes. Fitoterapia 158:105167. https://doi.org/10.1016/j.fitote.2022.105167

Article  CAS  PubMed  Google Scholar 

Chen LJ, Liu JW, Wang H, Li YH, Li YM, Guo FJ (2022) Four new sesquiterpenes from Curcuma wenyujin. Fitoterapia 163:105344. https://doi.org/10.1016/j.fitote.2022.105344

Article  CAS  PubMed  Google Scholar 

Liu R, Pei Q, Shou T, Zhang WJ, Hu JLW (2019) Apoptotic effect of green synthesized gold nanoparticles from Curcuma wenyujin extract against human renal cell carcinoma A498 cells. Int J Nanomedicine 14:4091–4103. https://doi.org/10.2147/IJN.S203222

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao SY, Xia GY, Wang LQ et al (2017) Sesquiterpenes from Curcuma wenyujin with their inhibitory activities on nitric oxide production in RAW 264. 7 cells. Nat Prod Res 31(5):548–554. https://doi.org/10.1080/14786419.2016.1205053

Article  CAS  PubMed  Google Scholar 

Xia Q, Wang X, Xu DJ, Chen XH, Chen FH (2012) Inhibition of platelet aggregation by curdione from Curcuma wenyujin essential Oil. Thromb Res 130(3):409–414. https://doi.org/10.1016/j.thromres.2012.04.005

Article  CAS  PubMed  Google Scholar 

Xie H, Su D, Zhang J et al (2020) Raw and vinegar processed Curcuma wenyujin regulates hepatic fibrosis via bloking TGF-β/Smad signaling pathways and up-regulation of MMP-2/TIMP-1 ratio. J Ethnopharmacol 246:111768. https://doi.org/10.1016/j.jep.2019.01.045

Article  CAS  PubMed  Google Scholar 

Kwon PK, Kim SW, De R, Jeong SW, Kim KT (2021) Isoprocurcumenol supports keratinocyte growth and survival through epidermal growth factor receptor activation. Int J Mol Sci 22(22):12579. https://doi.org/10.3390/ijms222212579

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang H, Li XY, Li YH, Wu HL, Li YM, Guo FJ (2022) Four new sesquiterpenes from the rhizomes of Curcuma wenyujin. Phytochem Lett 52:143–148. https://doi.org/10.1016/j.phytol.2022.11.002

Article  CAS  Google Scholar 

Rothberg BEG, Moeder CB, Kluger H et al (2008) Nuclear to non-nuclear Pmel17/gp100 expression (HMB45 staining) as a discriminator between benign and malignant melanocytic lesions. Mod Pathol 21(9):1121–1129. https://doi.org/10.1038/modpathol.2008.100

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu L, Zhong M, Dong J, Chen MJ, Shang J, Yue YY (2020) 5-Hydroxytryptamine (5-HT) positively regulates pigmentation via inducing melanoblast specification and melanin synthesis in Zebrafish Embryos. Biomolecules 10(9):1344. https://doi.org/10.3390/biom10091344

Article  CAS  PubMed  PubMed Central  Google Scholar 

Choi HY, Yoon JH, Youn KJ, Jun M (2022) Decursin prevents melanogenesis by suppressing MITF expression through the regulation of PKA/CREB, MAPKs, and PI3K/Akt/GSK-3β cascades. Biomed Pharmacother 147:112651. https://doi.org/10.1016/j.biopha.2022.112651

Article  CAS  PubMed  Google Scholar 

Wang HM, Qu LQ, Ng PLJ et al (2022) Natural citrus flavanone 5-demethylnobiletin stimulates melanogenesis through the activation of cAMP/CREB pathway in B16F10 cells. Phytomedicine 98:153941. https://doi.org/10.1016/j.phymed.2022.153941

Article  CAS  PubMed  Google Scholar 

Feng D, Fang ZX, Zhang PZ (2022) The melanin inhibitory effect of plants and phytochemicals: a systematic review. Phytomedicine 107:154449.

留言 (0)

沒有登入
gif