Advances and challenges in serine in the central nervous system: physicochemistry, physiology, and pharmacology

Abad-Perez P, Molina-Paya FJ, Martinez-Otero L, Borrell V, Redondo RL, Brotons-Mas JR (2023) Theta/gamma co-modulation disruption after NMDAr blockade by MK-801 is associated with spatial working memory deficits in mice. Neuroscience 519:162–176. https://doi.org/10.1016/j.neuroscience.2023.03.022

Article  PubMed  CAS  Google Scholar 

Avellar M, Scoriels L, Madeira C, Vargas-Lopes C, Marques P, Dantas C, Manhaes AC, Leite H, Panizzutti R (2016) The effect of D-serine administration on cognition and mood in older adults. Oncotarget 7:e11881–e11888. https://doi.org/10.18632/oncotarget.7691

Article  Google Scholar 

Bai YZ, Zhang SQ (2024) Selenium intake is an effective strategy for the improvement of cognitive decline in low cognition older americans. Int J Food Sci Nutr. https://doi.org/10.1080/09637486.2024.2380758

Article  PubMed  Google Scholar 

Bai YZ, Li JM, Zhang SQ (2024) Potential novel mechanism of selenium on cognition. Metab Brain Dis 39:249–251. https://doi.org/10.1007/s11011-023-01289-1

Article  PubMed  CAS  Google Scholar 

Balu DT, Li Y, Puhl MD, Benneyworth MA, Basu AC, Takagi S, Bolshakov VY, Coyle JT (2013) Multiple risk pathways for schizophrenia converge in serine racemase knockout mice, a mouse model of NMDA receptor hypofunction. Proc Natl Acad Sci U S A 110:e2400–e2409. https://doi.org/10.1073/pnas.1304308110

Article  PubMed  PubMed Central  Google Scholar 

Beesley S, Kumar SS (2023) The T-N-methyl-D-aspartate receptor: making the case for D-serine to be considered its inverse co-agonist. Neuropharmacology 238:e109654. https://doi.org/10.1016/j.neuropharm.2023.109654

Article  CAS  Google Scholar 

Belmaker RH, Agam G (2008) Major depressive disorder. N Engl J Med 358:55–68. https://doi.org/10.1056/NEJMra073096

Article  PubMed  CAS  Google Scholar 

Bessa-Neto D, Choquet D (2023) Molecular mechanisms of AMPAR reversible stabilization at synapses. Mol Cell Neurosci 125:e103856. https://doi.org/10.1016/j.mcn.2023.103856

Article  CAS  Google Scholar 

Biemans EA, Verhoeven-Duif NM, Gerrits J, Claassen JA, Kuiperij HB, Verbeek MM (2016) CSF D-serine concentrations are similar in Alzheimer’s disease, other dementias, and elderly controls. Neurobiol Aging 42:e213–e216. https://doi.org/10.1016/j.neurobiolaging.2016.03.017

Article  CAS  Google Scholar 

Blanke ML, Vandongen AMJ (2009) In: Van Dongen AM (ed) Biology of the NMDA receptor frontiers in neuroscience, 13th. Van Dongen, Ch, pp 283–312

Bonvento G, Oliet SHR, Panatier A (2022) Glycolysis-derived L-serine levels versus PHGDH expression in Alzheimer’s disease. Cell Metab 34:654–655. https://doi.org/10.1016/j.cmet.2022.04.002

Article  PubMed  CAS  Google Scholar 

Bryll A, Skrzypek J, Krzysciak W, Szelagowska M, Smierciak N, Kozicz T, Popiela T (2020) Oxidative-antioxidant imbalance and impaired glucose metabolism in schizophrenia. Biomolecules 10:384–424. https://doi.org/10.3390/biom10030384

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chen K, Lu Y, Liu C, Zhang L, Fang Z, Yu G (2018) Morroniside prevents H(2)O(2) or abeta(1–42)-induced apoptosis via attenuating JNK and p38 MAPK phosphorylation. Eur J Pharmacol 834:295–304. https://doi.org/10.1016/j.ejphar.2018.07.047

Article  PubMed  CAS  Google Scholar 

Chen Z, Tang Z, Zou K, Huang Z, Liu L, Yang Y, Wang W (2021) D-Serine produces antidepressant-like effects in mice through suppression of BDNF signaling pathway and regulation of synaptic adaptations in the nucleus accumbens. Mol Med 27:e127. https://doi.org/10.1186/s10020-021-00389-x

Article  CAS  Google Scholar 

Cho SE, Na KS, Cho SJ, Kang SG (2016) Low D-serine levels in schizophrenia: a systematic review and meta-analysis. Neurosci Lett 634:42–51. https://doi.org/10.1016/j.neulet.2016.10.006

Article  PubMed  CAS  Google Scholar 

Coyle JT, Balu DT (2018) The role of serine racemase in the pathophysiology of brain disorders. Adv Pharmacol 82:35–56. https://doi.org/10.1016/bs.apha.2017.10.002

Article  PubMed  CAS  Google Scholar 

Damseh N, Simonin A, Jalas C, Picoraro JA, Shaag A, Cho MT, Yaacov B, Neidich J, Al-Ashhab M, Juusola J, Bale S, Telegrafi A, Retterer K, Pappas JG, Moran E, Cappell J, Anyane Yeboa K, Abu-Libdeh B, Hediger MA, Chung WK, Elpeleg O, Edvardson S (2015) Mutations in SLC1A4, encoding the brain serine transporter, are associated with developmental delay, microcephaly and hypomyelination. J Med Genet 52:e541–e547. https://doi.org/10.1136/jmedgenet-2015-103104

Article  CAS  Google Scholar 

Dannenhoffer CA, Varlinskaya EI, Spear LP (2018) Effects of AMPA receptor antagonist, NBQX, and extrasynaptic GABA(A) agonist, THIP, on social behavior of adolescent and adult rats. Physiol Behav 194:212–217. https://doi.org/10.1016/j.physbeh.2018.05.024

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dong C, Zhang JC, Ren Q, Ma M, Qu Y, Zhang K, Yao W, Ishima T, Mori H, Hashimoto K (2018) Deletion of serine racemase confers D-serine -dependent resilience to chronic social defeat stress. Neurochem Int 116:43–51. https://doi.org/10.1016/j.neuint.2018.03.008

Article  PubMed  CAS  Google Scholar 

Dun Y, Duplantier J, Roon P, Martin PM, Ganapathy V, Smith SB (2008) Serine racemase expression and D-serine content are developmentally regulated in neuronal ganglion cells of the retina. J Neurochem 104:e970–e978. https://doi.org/10.1111/j.1471-4159.2007.05015.x

Article  CAS  Google Scholar 

Dupuis JP, Nicole O, Groc L (2023) NMDA receptor functions in health and disease: old actor, new dimensions. Neuron 111:2312–2328. https://doi.org/10.1016/j.neuron.2023.05.002

Article  PubMed  CAS  Google Scholar 

El-Hattab AW (2016) Serine biosynthesis and transport defects. Mol Genet Metab 118:153–159. https://doi.org/10.1016/j.ymgme.2016.04.010

Article  PubMed  CAS  Google Scholar 

El-Tallawy HN, Saleem TH, El-Ebidi AM, Hassan MH, Gabra RH, Farghaly WM, Abo El-Maali N, Sherkawy HS (2017) Clinical and biochemical study of D-serine metabolism among schizophrenia patients. Neuropsychiatr Dis Treat 13:1057–1063. https://doi.org/10.2147/NDT.S126979

Article  PubMed  PubMed Central  CAS  Google Scholar 

Eltokhi A, Bertocchi I, Rozov A, Jensen V, Borchardt T, Taylor A, Proenca CC, Rawlins JNP, Bannerman DM, Sprengel R (2023) Distinct effects of AMPAR subunit depletion on spatial memory. iScience 26:e108116. https://doi.org/10.1016/j.isci.2023.108116

Article  Google Scholar 

Espahbodinia M, Ettari R, Wen W, Wu A, Shen YC, Niu L, Grasso S, Zappala M (2017) Development of novel N-3-bromoisoxazolin-5-yl substituted 2,3-benzodiazepines as noncompetitive AMPAR antagonists. Bioorg Med Chem 25:3631–3637. https://doi.org/10.1016/j.bmc.2017.05.036

Article  PubMed  CAS  Google Scholar 

Folorunso OO, Harvey TL, Brown SE, Chelini G, Berretta S, Balu DT (2023) The D-serine biosynthetic enzyme serine racemase is expressed by reactive astrocytes in the amygdala of human and a mouse model of Alzheimer’s disease. Neurosci Lett 792:e136958. https://doi.org/10.1016/j.neulet.2022.136958

Article  CAS  Google Scholar 

Fuchs SA, De Barse MM, Scheepers FE, Cahn W, Dorland L, De Sain-Van Der Velden MG, Klomp LW, Berger R, Kahn RS, De Koning TJ (2008) Cerebrospinal fluid D-serine and glycine concentrations are unaltered and unaffected by olanzapine therapy in male schizophrenic patients. Eur Neuropsychopharmacol 18:e333–e338. https://doi.org/10.1016/j.euroneuro.2007.12.002

Article  CAS  Google Scholar 

Gao Y, Hong Y, Huang L, Zheng S, Zhang H, Wang S, Yao Y, Zhao Y, Zhu L, Xu Q, Chai X, Zeng Y, Zeng Y, Zheng L, Zhou Y, Luo H, Zhang X, Zhang H, Zhou Y, Fu G, Sun H, Huang TY, Zheng Q, Xu H, Wang X (2023) beta2-microglobulin functions as an endogenous NMDAR antagonist to impair synaptic function. Cell 186:1026–1038e20. https://doi.org/10.1016/j.cell.2023.01.021

Article  PubMed  CAS  Google Scholar 

Gao JJ, Xia ZT, Gunasekar S, Jiang C, Karp JM, Joshi N (2024) Precision drug delivery to the central nervous system using engineered nanoparticles. Nat Reviews Mater. https://doi.org/10.1038/s41578-024-00695-w

Article 

留言 (0)

沒有登入
gif