Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. https://doi.org/10.1016/s0076-6879(84)05016-3
Article CAS PubMed Google Scholar
Almaida-Pagán PF, de Costa J, Mendiola P, Tocher DR (2012) Age-related changes in mitochondrial membrane composition of rainbow trout (Oncorhynchus mykiss) heart and brain. Comp Biochem Physiol B: Biochem Mol Biol 163:129–137. https://doi.org/10.1016/j.cbpb.2012.05.013
Article CAS PubMed Google Scholar
Amanzada A, Malik IA, Nischwitz M et al (2011) Myeloperoxidase and elastase are only expressed by neutrophils in normal and in inflammed liver. Histochem Cell Biol 135:305–315. https://doi.org/10.1007/s00418-011-0787-1
Article CAS PubMed PubMed Central Google Scholar
Andersen SL (2003) Trajectories of brain development: point of vulnerability or window of opportunity? Neurosci Biobehav Rev 27:3–18. https://doi.org/10.1016/S0149-7634(03)00005-8
Bai B, Yang Y, Wang Q et al (2020) NLRP3 inflammasome in endothelial dysfunction. Cell Death Dis 11. https://doi.org/10.1038/S41419-020-02985-X
Bannister JV, Calabrese L (1987) Assays for superoxide dismutase. Methods Biochem Anal 32:279–312
Article CAS PubMed Google Scholar
Barichello T, Lemos JC, Generoso JS et al (2011) Oxidative stress, cytokine/chemokine and disruption of blood-brain barrier in neonate rats after meningitis by streptococcus agalactiae. Neurochem Res 36. https://doi.org/10.1007/s11064-011-0514-2
Barichello T, Generoso JS, Simões LR et al (2016) Role of microglial activation in the pathophysiology of bacterial meningitis. Mol Neurobiol 53. https://doi.org/10.1007/s12035-015-9107-4
Barrientos RM, Hein AM, Frank MG et al (2012) Intracisternal interleukin-1 receptor antagonist prevents postoperative cognitive decline and neuroinflammatory response in aged rats. J Neurosci 32:14641–14648. https://doi.org/10.1523/JNEUROSCI.2173-12.2012
Article CAS PubMed PubMed Central Google Scholar
Baruch K, Kertser A, Porat Z, Schwartz M (2015) Cerebral nitric oxide represses choroid plexus NFκB-dependent gateway activity for leukocyte trafficking. EMBO J 34:1816–1828. https://doi.org/10.15252/EMBJ.201591468
Article CAS PubMed PubMed Central Google Scholar
Biasizzo M, Kopitar-Jerala N (2020) Interplay between NLRP3 inflammasome and autophagy. Front Immunol 11. https://doi.org/10.3389/FIMMU.2020.591803
Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69. https://doi.org/10.1038/NRN2038
Article CAS PubMed Google Scholar
Bredt DS, Snyder SH (1994) Transient nitric oxide synthase neurons in embryonic cerebral cortical plate, sensory ganglia, and olfactory epithelium. Neuron 13:301–313. https://doi.org/10.1016/0896-6273(94)90348-4
Article CAS PubMed Google Scholar
Brown GC, Bal-Price A (2003) Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria. Mol Neurobiol 27:325–355. https://doi.org/10.1385/MN:27:3:325
Article CAS PubMed Google Scholar
Bubber P, Hartounian V, Gibson GE, Blass JP (2011) Abnormalities in the tricarboxylic acid (TCA) cycle in the brains of schizophrenia patients. Eur Neuropsychopharmacol 21:254–260. https://doi.org/10.1016/J.EURONEURO.2010.10.007
Article CAS PubMed Google Scholar
Cancelier AC, Petronilho F, Reinke A et al (2009) Inflammatory and oxidative parameters in cord blood as diagnostic of early-onset neonatal sepsis: a case-control study. Pediatr Crit Care Med 10. https://doi.org/10.1097/PCC.0b013e318198b0e3
Carvalho D, Petronilho F, Vuolo F et al (2008) The nociceptin/orphanin FQ-NOP receptor antagonist effects on an animal model of sepsis. Intensive Care Med 34:2284–2290. https://doi.org/10.1007/s00134-008-1313-3
Article CAS PubMed Google Scholar
Cassina A, Radi R (1996) Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys 328:309–316. https://doi.org/10.1006/abbi.1996.0178
Article CAS PubMed Google Scholar
Choi D-K (2005) Ablation of the inflammatory enzyme myeloperoxidase mitigates features of Parkinson’s disease in mice. J Neurosci 25:6594–6600. https://doi.org/10.1523/JNEUROSCI.0970-05.2005
Article CAS PubMed PubMed Central Google Scholar
Choubey V, Zeb A, Kaasik A (2021) Molecular mechanisms and regulation of mammalian mitophagy. Cells 11:38. https://doi.org/10.3390/CELLS11010038
Article PubMed PubMed Central Google Scholar
Cibelli M, Fidalgo AR, Terrando N et al (2010) Role of interleukin-1beta in postoperative cognitive dysfunction. Ann Neurol 68:360–368. https://doi.org/10.1002/ana.22082
Article CAS PubMed PubMed Central Google Scholar
Cobley JN, Fiorello ML, Bailey DM (2018) 13 reasons why the brain is susceptible to oxidative stress. Redox Biol 15:490–503. https://doi.org/10.1016/j.redox.2018.01.008
Article CAS PubMed PubMed Central Google Scholar
Czyż-Szypenbejl K, Mędrzycka-Dąbrowska W, Kwiecień-Jaguś K, Lewandowska K (2019) The occurrence of postoperative cognitive dysfunction (POCD) - systematic review. Psychiatr Pol 53:145–160. https://doi.org/10.12740/PP/90648
Dal-Pizzol F, Ritter C, Cassol-Jr OJ et al (2010) Oxidative mechanisms of brain dysfunction during sepsis. Neurochem Res 35. https://doi.org/10.1007/s11064-009-0043-4
Danielski LG, Della GA, Bonfante S et al (2020b) NLRP3 activation contributes to acute brain damage leading to memory impairment in sepsis-surviving rats. Mol Neurobiol 57:5247–5262. https://doi.org/10.1007/s12035-020-02089-9
Article CAS PubMed Google Scholar
Danielski LG, Giustina AD, Bonfante S et al (2020a) The NLRP3 inflammasome and its role in sepsis development. Inflammation 43. https://doi.org/10.1007/s10753-019-01124-9
Dansokho C, Heneka MT (2018) Neuroinflammatory responses in Alzheimer’s disease. J Neural Transm (Vienna) 125:771–779. https://doi.org/10.1007/s00702-017-1831-7
Article CAS PubMed Google Scholar
de Torre-Minguela C, del Castillo PM, Pelegrín P (2017) The NLRP3 and pyrin inflammasomes: implications in the pathophysiology of autoinflammatory diseases. Front Immunol 8. https://doi.org/10.3389/fimmu.2017.00043
De Young LM, Kheifets JB, Ballaron SJ, Young JM (1989) Edema and cell infiltration in the phorbol ester-treated mouse ear are temporally separate and can be differentially modulated by pharmacologic agents. Agents Actions 26:335–341
Degos V, Vacas S, Han Z et al (2013) Depletion of bone marrow-derived macrophages perturbs the innate immune response to surgery and reduces postoperative memory dysfunction. Anesthesiology 118:527–536. https://doi.org/10.1097/ALN.0b013e3182834d94
Article CAS PubMed Google Scholar
Deiner S, Silverstein JH (2009) Postoperative delirium and cognitive dysfunction. Br J Anaesth 103(Suppl):i41-46. https://doi.org/10.1093/bja/aep291
Article PubMed PubMed Central Google Scholar
Ding J, Wang K, Liu W et al (2016) Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535:111–116. https://doi.org/10.1038/NATURE18590
Article CAS PubMed Google Scholar
Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431
Article CAS PubMed Google Scholar
Eckenhoff RG, Maze M, Xie Z et al (2020) Perioperative neurocognitive disorder: state of the preclinical science. Anesthesiology 132:55–68. https://doi.org/10.1097/ALN.0000000000002956
Fedotcheva NI, Sokolov AP, Kondrashova MN (2006) Nonezymatic formation of succinate in mitochondria under oxidative stress. Free Radic Biol Med 41:56–64. https://doi.org/10.1016/J.FREERADBIOMED.2006.02.012
留言 (0)