Involvement of oncomiRs miR-23, miR-24, and miR-27 in the regulation of alternative polyadenylation in glioblastoma via CFIm25 cleavage factor

Abadi MHJN, Shafabakhsh R, Asemi Z, Mirzaei HR, Sahebnasagh R, Mirzaei H, Hamblin MR (2019) CFIm25 and alternative polyadenylation: conflicting roles in cancer. Cancer Lett 459:112–121

Article  PubMed Central  Google Scholar 

Bang J, Jun M, Lee S, Moon H, Ro SW (2023) Targeting EGFR/PI3K/AKT/mTOR signaling in Hepatocellular Carcinoma. Pharmaceutics 15(8):2130. https://doi.org/10.3390/pharmaceutics15082130

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen W, Jia Q, Song Y, Fu H, Wei G, Ni T (2017) Alternative polyadenylation: methods, findings, and impacts. Genom Proteom Bioinform 15(5):287–300

Article  CAS  Google Scholar 

Davis R, Shi Y (2014) The polyadenylation code: a unified model for the regulation of mRNA alternative poly adenylation. J Zhejiang Univ Sci B 15(5):429–437. https://doi.org/10.1631/jzus.B1400076

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Kort WWB, Spelier S, Devriese LA, Van Es RJJ, Willems SM (2021) Predictive value of EGFR-PI3K-AKT-mTOR-Pathway inhibitor biomarkers for Head and Neck squamous cell carcinoma: a systematic review. Mol Diagn Ther 25(2):123–136. https://doi.org/10.1007/s40291-021-00518-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dhuri K, Pradeep SP, Shi J, Anastasiadou E, Slack FJ, Gupta A, Zhong X, Bahal R (2022) Simultaneous targeting of multiple oncomiRs with phosphorothioate or PNA-Based anti-mirs in Lymphoma Cell lines. Pharm Res 39(11):2709–2720. https://doi.org/10.1007/s11095-022-03383-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Di Giammartino DC, Nishida K, Manley JL (2011) Mechanisms and consequences of alternative polyadenylation. Mol Cell 43(6):853–866

Article  PubMed  PubMed Central  Google Scholar 

Fabian MR, Sundermeier TR, Sonenberg N (2010) Understanding how miRNAs post-transcriptionally regulate Gene expression. In: Rhoads RE (ed) miRNA regulation of the Translational Machinery, vol 50. Springer, Berlin Heidelberg, pp 1–20. https://doi.org/10.1007/978-3-642-03103-8_1

Chapter  Google Scholar 

Fang W, Huang Y, Gu W, Gan J, Wang W, Zhang S, Wang K, Zhan J, Yang Y, Huang Y, Zhao H, Zhang L (2020) PI3K-AKT-mTOR pathway alterations in advanced NSCLC patients after progression on EGFR-TKI and clinical response to EGFR-TKI plus Everolimus combination therapy. Transl Lung Cancer Res 9(4):1258–1267. https://doi.org/10.21037/tlcr-20-141

Article  CAS  Google Scholar 

Fu Z, Wang L, Li S, Chen F, Au-Yeung KK-W, Shi C (2021) MicroRNA as an important target for anticancer drug development. Front Pharmacol 12:736323. https://doi.org/10.3389/fphar.2021.736323

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ge Y-F, Sun J, Jin C-J, Cao B-Q, Jiang Z-F, Shao J-F (2013) AntagomiR-27a targets FOXO3a in Glioblastoma and suppresses U87 cell growth in Vitro and in vivo. Asian Pac J Cancer Prev 14(2):963–968. https://doi.org/10.7314/APJCP.2013.14.2.963

Article  PubMed  Google Scholar 

Ghosh S, Ataman M, Bak M, Börsch A, Schmidt A, Buczak K, Martin G, Dimitriades B, Herrmann CJ, Kanitz A, Zavolan M (2022) CFIm-mediated alternative polyadenylation remodels cellular signaling and miRNA biogenesis. Nucleic Acids Res 50(6):3096–3114. https://doi.org/10.1093/nar/gkac114

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo T, Wu C, Zhang J, Yu J, Li G, Jiang H, Zhang X, Yu R, Liu X (2023) Dual blockade of EGFR and PI3K signaling pathways offers a therapeutic strategy for glioblastoma. Cell Commun Signal 21(1):363. https://doi.org/10.1186/s12964-023-01400-0

Article  CAS  Google Scholar 

Hu X, Chen D, Cui Y, Li Z, Huang J (2013) Targeting microRNA-23a to inhibit glioma cell invasion via HOXD10. Sci Rep 3(1):3423. https://doi.org/10.1038/srep03423

Article  PubMed  PubMed Central  Google Scholar 

Kouhkan F, Mobarra N, Soufi-Zomorrod M, Keramati F, Rad SMAH, Fathi-Roudsari M, Tavakoli R, Hajarizadeh A, Ziaei S, Lahmi R (2016) MicroRNA-129-1 acts as tumour suppressor and induces cell cycle arrest of GBM cancer cells through targeting IGF2BP3 and MAPK1. J Med Genet 53(1):24–33

Article  CAS  PubMed  Google Scholar 

Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinforma 9(1):1–13

Article  Google Scholar 

Lou J-C, Lan Y-L, Gao J-X, Ma B-B, Yang T, Yuan Z-B, Zhang H-Q, Zhu T-Z, Pan N, Leng S (2017) Silencing NUDT21 attenuates the mesenchymal identity of glioblastoma cells via the NF-κB pathway. Front Mol Neurosci 10:420

Article  PubMed  PubMed Central  Google Scholar 

Luo J, Wang X, Yang Y, Mao Q (2015) Role of micro-RNA (miRNA) in pathogenesis of glioblastoma. Eur Rev Med Pharmacol Sci 19(9):1630–1639

CAS  PubMed  Google Scholar 

Masamha CP (2023) The emerging roles of CFIm25 (NUDT21/CPSF5) in human biology and disease. WIREs RNA 14(3):e1757. https://doi.org/10.1002/wrna.1757

Article  CAS  PubMed  Google Scholar 

Masamha CP, Xia Z, Peart N, Collum S, Li W, Wagner EJ, Shyu A-B (2016) CFIm25 regulates glutaminase alternative terminal exon definition to modulate miR-23 function. RNA 22(6):830–838

Article  CAS  PubMed  PubMed Central  Google Scholar 

Masamha CP, Xia Z, Yang J, Albrecht TR, Li M, Shyu A-B, Li W, Wagner EJ (2014) CFIm25 links alternative polyadenylation to glioblastoma tumour suppression. Nature 510(7505):412–416

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mayr C, Bartel DP (2009) Widespread shortening of 3′ UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138(4):673–684

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meng Q, Deng Y, Lu Y, Wu C, Tang S (2023) Tumor-derived miRNAs as tumor microenvironment regulators for synergistic therapeutic options. J Cancer Res Clin Oncol 149(1):423–439. https://doi.org/10.1007/s00432-022-04432-0

Article  CAS  PubMed  Google Scholar 

Menon A, Abd-Aziz N, Khalid K, Poh CL, Naidu R (2022) miRNA: a promising therapeutic target in Cancer. Int J Mol Sci 23(19):11502. https://doi.org/10.3390/ijms231911502

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mizoguchi M, Guan Y, Yoshimoto K, Hata N, Amano T, Nakamizo A, Sasaki T (2013) Clinical implications of microRNAs in human glioblastoma. Front Oncol 3. https://doi.org/10.3389/fonc.2013.00019

Mocellin S, Pasquali S, Pilati P (2009) Oncomirs: from Tumor Biology to Molecularly targeted anticancer strategies. Mini-Reviews Med Chem 9(1):70–80. https://doi.org/10.2174/138955709787001802

Article  CAS  Google Scholar 

Paul P, Chakraborty A, Sarkar D, Langthasa M, Rahman M, Bari M, Singha RS, Malakar AK, Chakraborty S (2018) Interplay between miRNAs and human diseases. J Cell Physiol 233(3):2007–2018. https://doi.org/10.1002/jcp.25854

Article  CAS  PubMed  Google Scholar 

Proudfoot NJ (2011) Ending the message: poly (A) signals then and now. Genes Dev 25(17):1770–1782

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47–e47

留言 (0)

沒有登入
gif