Intestinal organ chips for disease modelling and personalized medicine

Zhao, Z. et al. Organoids. Nat. Rev. Methods Primers 2, 1–21 (2022).

Article  Google Scholar 

Dekkers, J. F. et al. A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat. Med. 19, 939–945 (2013).

Article  PubMed  CAS  Google Scholar 

Hu, H. et al. Long-term expansion of functional mouse and human hepatocytes as 3D organoids. Cell 175, 1591–1606.e19 (2018).

Article  PubMed  CAS  Google Scholar 

Sato, T. et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141, 1762–1772 (2011).

Article  PubMed  CAS  Google Scholar 

Kim, M. et al. Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nat. Commun. 10, 3991 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Takasato, M. et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526, 564–568 (2015).

Article  PubMed  CAS  Google Scholar 

Below, C. R. et al. A microenvironment-inspired synthetic three-dimensional model for pancreatic ductal adenocarcinoma organoids. Nat. Mater. 21, 110–119 (2022).

Article  PubMed  CAS  Google Scholar 

Izadifar, Z. et al. Modeling mucus physiology and pathophysiology in human organs-on-chips. Adv. Drug. Deliv. Rev. 191, 114542 (2022).

Article  PubMed  CAS  Google Scholar 

Múnera, J. O. et al. Development of functional resident macrophages in human pluripotent stem cell-derived colonic organoids and human fetal colon. Cell Stem Cell 30, 1434–1451.e9 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Lee, K. K. et al. Human stomach-on-a-chip with luminal flow and peristaltic-like motility. Lab. Chip 18, 3079–3085 (2018).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Leung, C. M. et al. A guide to the organ-on-a-chip. Nat. Rev. Methods Primers 2, 3232 (2022).

Article  Google Scholar 

Ingber, D. E. Human organs-on-chips for disease modelling, drug development and personalized medicine. Nat. Rev. Genet. 23, 467–491 (2022).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bai, H. & Ingber, D. E. What can an organ-on-a-chip teach us about human lung pathophysiology? Physiology 37, 242–252 (2022).

Article  PubMed Central  CAS  Google Scholar 

Ingber, D. E. Is it time for reviewer 3 to request human organ chip experiments instead of animal validation studies? Adv. Sci. 7, 2002030 (2020).

Article  CAS  Google Scholar 

Bhatia, S. N. & Ingber, D. E. Microfluidic organs-on-chips. Nat. Biotechnol. 32, 760–772 (2014).

Article  PubMed  CAS  Google Scholar 

Kim, H. J. & Ingber, D. E. Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr. Biol. 5, 1130–1140 (2013). Research describing that the application of flow and cyclic strain to Caco-2 cell-lined gut chips induced crypt–villus axis formation and differentiation into specialized cell types of small intestine.

Article  CAS  Google Scholar 

Bein, A. et al. Microfluidic organ-on-a-chip models of human intestine. Cell Mol. Gastroenterol. Hepatol. 5, 659–668 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Antonio, V., Panchal, A., Kasendra, M. & Riccardo, B. Reconstituting cytoarchitecture and function of human epithelial tissues on an open-top organ-chip. J. Vis. Exp. 192, e64633 (2023).

Google Scholar 

Jalili-Firoozinezhad, S. et al. A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip. Nat. Biomed. Eng. 3, 520–531 (2019). A demonstration of sustainable complex human microbiome co-culture with human cells without a physical barrier between them.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kasendra, M. et al. Development of a primary human Small Intestine-on-a-Chip using biopsy-derived organoids. Sci. Rep. 8, 2871 (2018). Description of methods to create a primary human intestine chip using organoid-based cells.

Article  PubMed  PubMed Central  Google Scholar 

Kasendra, M. et al. Duodenum intestine-chip for preclinical drug assessment in a human relevant model. eLife 9, e50135 (2020). Research describing a primary human intestine chip that showcases representative drug transport, metabolism and drug–drug interaction.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Elmentaite, R. et al. Cells of the human intestinal tract mapped across space and time. Nature 597, 250–255 (2021).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Clevers, H. et al. Tissue-engineering the intestine: the trials before the trials. Cell Stem Cell 24, 855–859 (2019).

Article  PubMed  CAS  Google Scholar 

Owens, B. M. J. & Simmons, A. Intestinal stromal cells in mucosal immunity and homeostasis. Mucosal Immunol. 6, 224–234 (2013).

Article  PubMed  CAS  Google Scholar 

Brown, H. & Esterházy, D. Intestinal immune compartmentalization: implications of tissue specific determinants in health and disease. Mucosal Immunol. 14, 1259–1270 (2021).

Article  PubMed  CAS  Google Scholar 

Noah, T. K., Donahue, B. & Shroyer, N. F. Intestinal development and differentiation. Exp. Cell Res. 317, 2702–2710 (2011).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Allaire, J. M. et al. The intestinal epithelium: central coordinator of mucosal immunity. Trends Immunol. 39, 677–696 (2018).

Article  PubMed  CAS  Google Scholar 

Gustafsson, J. K. & Johansson, M. E. V. The role of goblet cells and mucus in intestinal homeostasis. Nat. Rev. Gastroenterol. Hepatol. 19, 785–803 (2022).

Article  PubMed  Google Scholar 

Schneider, C., O’Leary, C. E. & Locksley, R. M. Regulation of immune responses by tuft cells. Nat. Rev. Immunol. 19, 584–593 (2019).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Procházková, N. et al. Advancing human gut microbiota research by considering gut transit time. Gut 72, 180–191 (2023).

Article  PubMed  Google Scholar 

Reddy, S. N. et al. Colonic motility and transit in health and ulcerative colitis. Gastroenterology 101, 1289–1297 (1991).

Article  PubMed  CAS  Google Scholar 

Bassotti, G. et al. Gastrointestinal motility disorders in inflammatory bowel diseases. World J. Gastroenterol. 20, 37–44 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Caio, G. et al. Celiac disease: a comprehensive current review. BMC Med. 17, 142 (2019).

Article  PubMed 

留言 (0)

沒有登入
gif