Pharmacokinetics of trastuzumab and its efficacy and safety in HER2-positive cancer patients

US Food and Drug Administration (FDA) (2017) HERCEPTIN® (trastuzumab) US Prescribing Information. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/103792s5337lbl.pdf. Accessed 7 Apr 2023

Boekhout AH, Beijnen JH, Schellens JH (2011) Trastuzumab Oncologist 16(6):800–810

Article  CAS  PubMed  Google Scholar 

Diaby V, Tawk R, Sanogo V, Xiao H, Montero AJ (2015) A review of systematic reviews of the cost-effectiveness of hormone therapy, chemotherapy, and targeted therapy for breast cancer. Breast Cancer Res Treat 151(1):27–40

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yakes FM, Chinratanalab W, Ritter CA, King W, Seelig S, Arteaga CL (2002) Herceptin-induced inhibition of phosphatidylinositol-3 kinase and akt is required for antibody-mediated effects on p27, cyclin D1, and antitumor action. Cancer Res 62(14):4132–4141

CAS  PubMed  Google Scholar 

Lane HA, Beuvink I, Motoyama AB, Daly JM, Neve RM, Hynes NE (2000) ErbB2 potentiates breast tumor proliferation through modulation of p27(Kip1)-Cdk2 complex formation: receptor overexpression does not determine growth dependency. Mol Cell Biol 20(9):3210–3223

Article  CAS  PubMed  PubMed Central  Google Scholar 

Molina MA, Codony-Servat J, Albanell J, Rojo F, Arribas J, Baselga J (2001) Trastuzumab (herceptin), a humanized anti-Her2 receptor monoclonal antibody, inhibits basal and activated Her2 ectodomain cleavage in breast cancer cells. Cancer Res 61(12):4744–4749

CAS  PubMed  Google Scholar 

Kute T, Stehle JR Jr., Ornelles D, Walker N, Delbono O, Vaughn JP (2012) Understanding key assay parameters that affect measurements of trastuzumab-mediated ADCC against Her2 positive breast cancer cells. Oncoimmunology 1(6):810–821

Article  PubMed  PubMed Central  Google Scholar 

Klos KS, Zhou X, Lee S et al (2003) Combined trastuzumab and paclitaxel treatment better inhibits ErbB-2-mediated angiogenesis in breast carcinoma through a more effective inhibition of akt than either treatment alone. Cancer 98(7):1377–1385

Article  CAS  PubMed  Google Scholar 

Tsao LC, Crosby EJ, Trotter TN et al (2019) CD47 blockade augmentation of trastuzumab antitumor efficacy dependent on antibody-dependent cellular phagocytosis. JCI Insight. ;4(24)

Quartino AL, Hillenbach C, Li J et al (2016) Population pharmacokinetic and exposure-response analysis for trastuzumab administered using a subcutaneous manual syringe injection or intravenously in women with HER2-positive early breast cancer. Cancer Chemother Pharmacol 77(1):77–88

Article  CAS  PubMed  Google Scholar 

Yang J, Zhao H, Garnett C et al (2013) The combination of exposure-response and case-control analyses in regulatory decision making. J Clin Pharmacol 53(2):160–166

Article  PubMed  Google Scholar 

Bruno R, Washington CB, Lu JF, Lieberman G, Banken L, Klein P (2005) Population pharmacokinetics of trastuzumab in patients with HER2 + metastatic breast cancer. Cancer Chemother Pharmacol 56(4):361–369

Article  CAS  PubMed  Google Scholar 

Levêque D, Gigou L, Bergerat JP (2008) Clinical pharmacology of trastuzumab. Curr Clin Pharmacol 3(1):51–55

Article  PubMed  Google Scholar 

Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235(4785):177–182

Article  CAS  PubMed  Google Scholar 

Nahta R, Esteva FJ (2006) Herceptin: mechanisms of action and resistance. Cancer Lett 232(2):123–138

Article  CAS  PubMed  Google Scholar 

Schaller G, Evers K, Papadopoulos S, Ebert A, Bühler H (2001) Current use of HER2 tests.Ann Oncol. 12(Suppl 1):S97–S100

Roche (2023) Apr : Herceptin Product Information: AnnexI.Summary of product characteristics.https://www.ema.europa.eu/en/documents/product-information/herceptin-epar-product-information_en.pdf. Accessed 10

Maadi H, Soheilifar MH, Choi W-S, Moshtaghian A, Wang Z (2021) Trastuzumab Mechanism of Action; 20 years of Research to Unravel a Dilemma. Cancers 13:14

Article  Google Scholar 

Dubska L, Andera L, Sheard MA (2005) HER2 signaling downregulation by trastuzumaband suppression of the PI3K/Akt pathway: an unexpected effect on TRAIL-induced apoptosis. FEBS Lett 579(19):4149–4158

Article  CAS  PubMed  Google Scholar 

Junttila TT, Akita RW, Parsons K et al (2009) Ligand-independent HER2/HER3/PI3K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941. Cancer Cell 15(5):429–440

Article  CAS  PubMed  Google Scholar 

Baselga J, Carbonell X, Castaneda-Soto NJ et al (2005) Phase II study of efficacy, safety, and pharmacokinetics of trastuzumab monotherapy administered on a 3-weekly schedule. J Clin Oncol 23(10):2162–2171

Article  CAS  PubMed  Google Scholar 

Leyland-Jones B, Gelmon K, Ayoub JP et al (2003) Pharmacokinetics, safety, and efficacy of trastuzumab administered every three weeks in combination with paclitaxel. J Clin Oncol 21(21):3965–3971

Article  CAS  PubMed  Google Scholar 

Maximiano S, Magalhaes P, Guerreiro MP, Morgado M (2016) Trastuzumab in the treatment of breast Cancer. BioDrugs 30(2):75–86

Article  CAS  PubMed  Google Scholar 

Terrell-Hall TB, Nounou MI, El-Amrawy F, Griffith JIG, Lockman PR (2017) Trastuzumab distribution in an in-vivo and in-vitro model of brain metastases of breast cancer. Oncotarget 8(48):83734–83744

Article  PubMed  PubMed Central  Google Scholar 

Murthy R, Borges VF, Conlin A et al (2018) Tucatinib with capecitabine and trastuzumab in advanced HER2-positive metastatic breast cancer with and without brain metastases: a non-randomised, open-label, phase 1b study. Lancet Oncol 19(7):880–888

Article  CAS  PubMed  Google Scholar 

Mutlu H, Buyukcelik A (2015) The combination of weekly trastuzumab plus vinorelbine may be preferable regimen in HER-2 positive breast cancer patients with brain metastasis. J Oncol Pharm Pract 21(4):310–312

Article  CAS  PubMed  Google Scholar 

Lin NU, Pegram M, Sahebjam S et al (2021) Pertuzumab Plus High-Dose Trastuzumab in patients with Progressive Brain metastases and HER2-Positive metastatic breast Cancer: primary analysis of a phase II study. J Clin Oncol 39(24):2667–2675

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pestalozzi BC, Brignoli S (2000) Trastuzumab in CSF. J Clin Oncol 18(11):2349–2351

Article  CAS  PubMed  Google Scholar 

Stemmler HJ, Schmitt M, Willems A, Bernhard H, Harbeck N, Heinemann V (2007) Ratio of trastuzumab levels in serum and cerebrospinal fluid is altered in HER2-positive breast cancer patients with brain metastases and impairment of blood-brain barrier. Anticancer Drugs 18(1):23–28

Article  CAS  PubMed  Google Scholar 

Lai R, Dang CT, Malkin MG, Abrey LE (2004) The risk of central nervous system metastases after trastuzumab therapy in patients with breast carcinoma. Cancer 101(4):810–816

Article  CAS  PubMed  Google Scholar 

Lencer WI, Blumberg RS (2005) A passionate kiss, then run: exocytosis and recycling of IgG by FcRn. Trends Cell Biol 15(1):5–9

Article  CAS  PubMed  Google Scholar 

Tabrizi MA, Tseng CM, Roskos LK (2006) Elimination mechanisms of therapeutic monoclonal antibodies. Drug Discovery Today 11(1–2):81–88

Article  CAS  PubMed  Google Scholar 

Keizer RJ, Huitema AD, Schellens JH, Beijnen JH (2010) Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet 49(8):493–507

Article  CAS  PubMed  Google Scholar 

Quartino AL, Li H, Kirschbrown WP et al (2019) Population pharmacokinetic and covariate analyses of intravenous trastuzumab (Herceptin®), a HER2-targeted monoclonal antibody, in patients with a variety of solid tumors. Cancer Chemother Pharmacol 83(2):329–340

留言 (0)

沒有登入
gif