Shape-persistent ladder molecules exhibit nanogap-independent conductance in single-molecule junctions

Kim, J., Ghaffari, R. & Kim, D.-H. The quest for miniaturized soft bioelectronic devices. Nat. Biomed. Eng. 1, 0049 (2017).

Article  Google Scholar 

Lundstrom, M. Moore’s law forever? Science 299, 210–211 (2003).

Article  CAS  PubMed  Google Scholar 

Toumey, C. Less is Moore. Nat. Nanotechnol. 11, 2–3 (2016).

Article  CAS  PubMed  Google Scholar 

Xiang, D., Wang, X., Jia, C., Lee, T. & Guo, X. Molecular-scale electronics: from concept to function. Chem. Rev. 116, 4318–4440 (2016).

Article  CAS  PubMed  Google Scholar 

Meng, L. et al. Dual-gated single-molecule field-effect transistors beyond Moore’s law. Nat. Commun. 13, 1410 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, T., Bandari, V. K. & Schmidt, O. G. Molecular electronics: creating and bridging molecular junctions and promoting its commercialization. Adv. Mater. 35, 2209088 (2023).

Article  CAS  Google Scholar 

Chen, H. & Fraser Stoddart, J. From molecular to supramolecular electronics. Nat. Rev. Mater. 6, 804–828 (2021).

Article  CAS  Google Scholar 

Stone, I. et al. A single-molecule blueprint for synthesis. Nat. Rev. Chem. 5, 695–710 (2021).

Article  PubMed  Google Scholar 

Zou, Q., Qiu, J., Zang, Y., Tian, H. & Venkataraman, L. Modulating single-molecule charge transport through external stimulus. eScience 3, 100115 (2023).

Article  Google Scholar 

Li, T., Hu, W. & Zhu, D. Nanogap electrodes. Adv. Mater. 22, 286–300 (2010).

Article  PubMed  Google Scholar 

Luo, S., Hoff, B. H., Maier, S. A. & de Mello, J. C. Scalable fabrication of metallic nanogaps at the sub-10 nm level. Adv. Sci. 8, 2102756 (2021).

Article  CAS  Google Scholar 

Chang, S., He, J., Zhang, P., Gyarfas, B. & Lindsay, S. Gap distance and interactions in a molecular tunnel junction. J. Am. Chem. Soc. 133, 14267–14269 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

McNaught, A. D. & Wilkinson, A. Compendium of Chemical Terminology Vol. 1669 (Blackwell Science, 1997).

Cai, Z. et al. Exceptional single-molecule transport properties of ladder-type heteroacene molecular wires. J. Am. Chem. Soc. 138, 10630–10635 (2016).

Article  CAS  PubMed  Google Scholar 

Li, J. et al. Ladder-type conjugated molecules as robust multi-state single-molecule switches. Chem 9, 2282–2297 (2023).

Moore, J. S. Shape-persistent molecular architectures of nanoscale dimension. Acc. Chem. Res. 30, 402–413 (1997).

Article  CAS  Google Scholar 

Cao, Z., Leng, M., Cao, Y., Gu, X. & Fang, L. How rigid are conjugated non-ladder and ladder polymers? J. Polym. Sci. 60, 298–310 (2022).

Article  CAS  Google Scholar 

Ikai, T. et al. Triptycene-based ladder polymers with one-handed helical geometry. J. Am. Chem. Soc. 141, 4696–4703 (2019).

Article  CAS  PubMed  Google Scholar 

Liu, X., Zhu, C. & Tang, B. Z. Bringing inherent charges into aggregation-induced emission research. Acc. Chem. Res. 55, 197–208 (2022).

Article  CAS  PubMed  Google Scholar 

Wan, X., Li, C., Zhang, M. & Chen, Y. Acceptor–donor–acceptor type molecules for high performance organic photovoltaics – chemistry and mechanism. Chem. Soc. Rev. 49, 2828–2842 (2020).

Article  CAS  PubMed  Google Scholar 

Li, Z. et al. Understanding the conductance dispersion of single-molecule junctions. J. Phys. Chem. C 125, 3406–3414 (2021).

Article  CAS  Google Scholar 

Ji, X. et al. Pauli paramagnetism of stable analogues of pernigraniline salt featuring ladder-type constitution. J. Am. Chem. Soc. 142, 641–648 (2020).

Article  CAS  PubMed  Google Scholar 

Maekawa, T., Ueno, H., Segawa, Y., Haley, M. M. & Itami, K. Synthesis of open-shell ladder π-systems by catalytic C–H annulation of diarylacetylenes. Chem. Sci. 7, 650–654 (2016).

Article  CAS  PubMed  Google Scholar 

Babel, A. & Jenekhe, S. A. High electron mobility in ladder polymer field-effect transistors. J. Am. Chem. Soc. 125, 13656–13657 (2003).

Article  CAS  PubMed  Google Scholar 

Teo, Y. C., Lai, H. W. H. & Xia, Y. Synthesis of ladder polymers: developments, challenges, and opportunities. Chem. Eur. J. 23, 14101–14112 (2017).

Article  CAS  PubMed  Google Scholar 

Lee, J., Kalin, A. J., Yuan, T., Al-Hashimi, M. & Fang, L. Fully conjugated ladder polymers. Chem. Sci. 8, 2503–2521 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cai, Z., Awais, M. A., Zhang, N. & Yu, L. Exploration of syntheses and functions of higher ladder-type π-conjugated heteroacenes. Chem 4, 2538–2570 (2018).

Article  CAS  Google Scholar 

Huang, C., Rudnev, A. V., Hong, W. & Wandlowski, T. Break junction under electrochemical gating: testbed for single-molecule electronics. Chem. Soc. Rev. 44, 889–901 (2015).

Article  CAS  PubMed  Google Scholar 

Li, L. et al. Highly conducting single-molecule topological insulators based on mono- and di-radical cations. Nat. Chem. 14, 1061–1067 (2022).

Article  CAS  PubMed  Google Scholar 

Liu, J., Huang, X., Wang, F. & Hong, W. Quantum interference effects in charge transport through single-molecule junctions: detection, manipulation, and application. Acc. Chem. Res. 52, 151–160 (2019).

Article  CAS  PubMed  Google Scholar 

Su, T. A., Neupane, M., Steigerwald, M. L., Venkataraman, L. & Nuckolls, C. Chemical principles of single-molecule electronics. Nat. Rev. Mater. 1, 16002 (2016).

Article  CAS  Google Scholar 

Xu, B. & Tao, N. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301, 1221–1223 (2003).

Article  CAS  PubMed  Google Scholar 

Dantus, M., Bowman, R. M. & Zewail, A. H. Femtosecond laser observations of molecular vibration and rotation. Nature 343, 737–739 (1990).

Article  CAS  Google Scholar 

Feng, A. et al. σ–σ Stacked supramolecular junctions. Nat. Chem. 14, 1158–1164 (2022).

Article  CAS  PubMed  Google Scholar 

Li, J. et al. Achieving multiple quantum-interfered states via through-space and through-bond synergistic effect in foldamer-based single-molecule junctions. J. Am. Chem. Soc. 144, 8073–8083 (2022).

Article  CAS  PubMed  Google Scholar 

Lee, W. et al. Increased molecular conductance in oligo[n]phenylene wires by thermally enhanced dihedral planarization. Nano Lett. 22, 4919–4924 (2022).

Article  CAS  PubMed 

留言 (0)

沒有登入
gif