Sysmex XN-HPC: study of reference intervals and clinical decision limits in healthy allogeneic donors mobilised with G-CSF

Amouzegar A, Dey BR, Spitzer TR. Peripheral blood or bone marrow stem cells? practical considerations in hematopoietic stem cell transplantation. Transfus Med Rev. 2019;33:43–50.

Article  PubMed  Google Scholar 

Peripheral blood haploidentical allogeneic stem cell Transplantation in older adults with acute myeloid leukemia and myelodysplastic syndromes demonstrates long term survival, results from the Australasian bone marrow transplant recipient registry.

Sebastien B, Cheverton P, Magnin C, Aouni J, Castan R. Development and validation of a predictive model to guide the use of plerixafor in pediatric population. Bone Marrow TranspL. 2022;57:1827–32.

Article  CAS  Google Scholar 

Balint MT, Lemajić N, Jurišić V, et al. An evidence-based and risk-adapted GSF versus GSF plus plerixafor mobilization strategy to obtain a sufficient CD34+ cell yield in the harvest for autologous stem cell transplants. TRANSL ONCOL. 2024;39:101811.

Article  CAS  PubMed  Google Scholar 

Gauntner TD, Brunstein CG, Cao Q, et al. Association of CD34 cell dose with 5-year overall survival after peripheral blood allogeneic hematopoietic cell transplantation in adults with hematologic malignancies. Transpl Cell Ther. 2022;28:88–95.

Article  CAS  Google Scholar 

Zaucha JM, Gooley T, Bensinger WI, et al. CD34 cell dose in granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cell grafts affects engraftment kinetics and development of extensive chronic graft-versus-host disease after human leukocyte antigen-identical sibling transplantation. Blood. 2001;98:3221–7.

Article  CAS  PubMed  Google Scholar 

Urbano-Ispizua A, Rozman C, Martinez C, et al. Rapid engraftment without significant graft-versus-host disease after allogeneic transplantation of CD34+ selected cells from peripheral blood. Blood. 1997;89:3967–73.

Article  CAS  PubMed  Google Scholar 

Mohty M, Bilger K, Jourdan E, et al. Higher doses of CD34+ peripheral blood stem cells are associated with increased mortality from chronic graft-versus-host disease after allogeneic HLA-identical sibling transplantation. Leukemia. 2003;17:869–75.

Article  CAS  PubMed  Google Scholar 

Bryant AR, Hilden P, Giralt S, et al. Pre-salvage ISS and other important outcome associations in CD34 Selected allogeneic hematopoietic stem cell transplant for multiple myeloma. Biol Blood Marrow Tr. 2019;26:58–65.

Article  Google Scholar 

Anu P, Antti T, Raija S, et al. Comparison ofCD34+ cell mobilization, blood graft cellular composition, and post-transplant outcome in myeloma patients mobilized with filgrastim or pegfilgrastim added to low-dose cyclophosphamide: a prospective multicenter study. Transfusion. 2021;61:3202–12.

Article  CAS  PubMed  Google Scholar 

Piccirillo N, Putzulu R, Metafuni E, et al. Peripheral blood allogeneic stem cell mobilization: can we predict a suboptimal mobilization? TRANSFUS MED REV. 2023;37:150725.

Article  PubMed  Google Scholar 

Xiang J, Shi M, Fiala MA, et al. Machine learning–based scoring models to predict hematopoietic stem cell mobilization in allogeneic donors. Blood Adv. 2022;6:1991–2000.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang L, Liu L, Song Z, et al. Hematopoietic progenitor cell count as a potential quantitative marker in apheresis products during allogeneic stem cell transplantation. Transfusion. 2024;64:348–56.

Article  CAS  PubMed  Google Scholar 

Jamal A, Khan T, Zaidi U, et al. Highly specific functional equivalence of XN-HPC for optimum CD34+ cell count in harvested allogeneic bone marrow stem cell products. Hematology. 2022;27:232–8.

Article  CAS  PubMed  Google Scholar 

Al Mamari S, Al Saadi A, Al Zaabi R, et al. Measurement of hematopoietic progenitor cells using XN2000 hematology analyzer. Int J Lab Hematol. 2022;44:82–7.

Article  PubMed  Google Scholar 

Kim SM, Kim HY, Kim SJ, et al. Correlation between peripheral blood automated hematopoietic progenitor cell counts and flow cytometricCD34+ cell counts differs according to diagnosis in patients undergoing autologous peripheral blood stem cell transplantation. J CLIN APHERESIS. 2021;36:737–49.

Article  PubMed  Google Scholar 

Oelschlaegel U, Bornhaeuser M, Thiede C, Ehninger G, Hoelig K. HPC enumeration with the Sysmex XE-2100 can guide further flow cytometric CD34+ measurements and timing of leukaphereses. Cytotherapy. 2003;5:414–9.

Article  CAS  PubMed  Google Scholar 

Tanosaki R, Kumazawa T, Yoshida A, et al. Novel and rapid enumeration method of peripheral blood stem cells using automated hematology analyzer. INT J LAB HEMATOL. 2014;36:521–30.

Article  CAS  PubMed  Google Scholar 

Huang L, Zhu G, Mu Y, Xia Y. The Sysmex XN series hematopoietic progenitor cell (XN-HPC) as a predictive marker of stem cell enumeration and products: a systemic review and meta-analysis. Hematology. 2022;27:1230–6.

Article  PubMed  Google Scholar 

Dima F, Barison E, Midolo M, Benedetti F, Lippi G. Assessment of haematopoietic progenitor cell counting with the Sysmex((R)) XN-1000 to guide timing of apheresis of peripheral blood stem cells. Blood Transfus-Italy. 2020;18:67–76.

Google Scholar 

Peerschke EI, Moung C, Pessin MS, Maslak P. Evaluation of new automated hematopoietic progenitor cell analysis in the clinical management of peripheral blood stem cell collections. Transfusion. 2015;55:2001–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Furundarena JR, Uranga A, Alkorta A, et al. Evaluation of the predictive value of the hematopoietic progenitor cell count using an automated hematology analyzer for CD34+ stem cell mobilization and apheresis product yield. Int J Lab Hematol. 2020;42:170–9.

Article  PubMed  Google Scholar 

Söderström A, Møller BK, Sørensen BS. Evaluation of the Sysmex XN automated hematopoietic progenitor cell enumeration for timing of peripheral blood stem cell harvest. Transfus Apher Sci. 2020;59:102683.

Article  PubMed  Google Scholar 

Standardization. IOF. Medical Laboratories-Requirementsfor Quality and Competence: An I S 0 Perspective. 2013.

To LB, Levesque J, Herbert KE. How I treat patients who mobilize hematopoietic stem cells poorly. Blood. 2011;118:4530–40.

Article  CAS  PubMed  Google Scholar 

Bensinger W, Appelbaum F, Rowley S, et al. Factors that influence collection and engraftment of autologous peripheral-blood stem cells. J Clin Oncol. 1995;13:2547.

Article  CAS  PubMed  Google Scholar 

Newell LF, Shoop KM, Knight RJ, et al. Feasibility and cost analysis of day 4 granulocyte colony-stimulating factor mobilized peripheral blood progenitor cell collection from HLA-matched sibling donors. Cytotherapy. 2019;21:725–37.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Teipel R, Schetelig J, Kramer M, et al. Prediction of hematopoietic stem cell yield after mobilization with granulocyte–colony-stimulating factor in healthy unrelated donors. Transfusion. 2015;55:2855–63.

Article  CAS  PubMed  Google Scholar 

Williams LS, Williams KM, Gillis N, et al. Donor-derived malignancy and transplantation morbidity: risks of patient and donor genetics in allogeneic hematopoietic stem cell transplantation. TRANSPL CELL THER. 2024;30:255–67.

Article  Google Scholar 

Ings SJ, Balsa C, Leverett D, Mackinnon S, Linch DC, Watts MJ. Peripheral blood stem cell yield in 400 normal donors mobilised with granulocyte colony-stimulating factor (G-CSF): impact of age, sex, donor weight and type of G-CSF used. Brit J Haematol. 2006;134:517–25.

Article  Google Scholar 

Bailén R, Pérez Corral AM, Pascual C, et al. Factors predicting peripheral blood progenitor cell mobilization in healthy donors in the era of related alternative donors: Experience from a single center. J Clin Apheresis. 2019;34:373–80.

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif