Potential of plant growth-promoting microbes for improving plant and soil health for biotic and abiotic stress management in mangrove vegetation

Abbas R, Rasul S, Aslam K et al (2019) Halotolerant PGPR: a hope for cultivation of saline soils. J King Saud Univ Sci 31:1195–1201. https://doi.org/10.1016/j.jksus.2019.02.019

Article  Google Scholar 

Aber JS, Pavri F, Aber SW (2012) Wetland environments: a global perspective. Wiley. https://doi.org/10.1002/9781118349540.fmatter

Abhilash PC, Dubey RK, Tripathi V et al (2016) Plant growth-promoting microorganisms for environmental sustainability. Trends Biotechnol 34:847–850. https://doi.org/10.1016/j.tibtech.2016.05.005

Article  CAS  Google Scholar 

Adame MF, Reef R, Santini NS et al (2021) Mangroves in arid regions: ecology, threats, and opportunities. Estuar Coast Shelf Sci 248:106796. https://doi.org/10.1016/j.ecss.2020.106796

Article  CAS  Google Scholar 

Ahouangan BSCM, Koura BI, Sèwadé C et al (2022) Ruminant keeping around mangrove forests in Benin (West Africa): herders’ perceptions of threats and opportunities for conservation of mangroves. Discover Sustain 3:13. https://doi.org/10.1007/s43621-022-00082-x

Article  Google Scholar 

Ajijah N, Fiodor A, Pandey AK et al (2023) Plant growth-promoting bacteria (PGPB) with biofilm-forming ability: a multifaceted agent for sustainable agriculture. Diversity 15:112. https://doi.org/10.3390/d15010112

Article  CAS  Google Scholar 

Alfaro-Espinoza G, Ullrich MS (2015) Bacterial N2-fixation in mangrove ecosystems: insights from a diazotroph–mangrove interaction. Front Microbiol. https://doi.org/10.3389/fmicb.2015.00445

Article  Google Scholar 

Ali S, Hameed S, Shahid M et al (2020) Functional characterization of potential PGPR exhibiting broad-spectrum antifungal activity. Microbiol Res 232:126389. https://doi.org/10.1016/j.micres.2019.126389

Article  CAS  Google Scholar 

Aljahdali MO, Munawar S, Khan WR (2021) Monitoring mangrove forest degradation and regeneration: landsat time series analysis of moisture and vegetation indices at Rabigh Lagoon. Red Sea for Trees Livelihoods 12:52. https://doi.org/10.3390/f12010052

Article  Google Scholar 

Allard SM, Costa MT, Bulseco AN, et al (2020) Introducing the mangrove microbiome initiative: identifying microbial research priorities and approaches to better understand, protect, and rehabilitate mangrove ecosystems. mSystems 5(5), 10–1128. https://doi.org/10.1128/mSystems.00658-20

Alkaabi AK, Ramadan GA, Elddin AMT et al (2022) The multifarious endophytic actinobacterial isolate, Streptomyces tubercidicus UAE1, combined with the seaweed biostimulant further promotes growth of Avicennia marina. Front Mar Sci 9. https://doi.org/10.3389/fmars.2022.896461

Alongi DM (2008) Mangrove forests: resilience, protection from tsunamis, and responses to global climate change. Estuar Coast Shelf Sci 76:1–13. https://doi.org/10.1016/j.ecss.2007.08.024

Article  Google Scholar 

Alongi DM (2014) Carbon cycling and storage in mangrove forests. Ann Rev Mar Sci 6:195–219. https://doi.org/10.1146/annurev-marine-010213-135020

Article  Google Scholar 

Alongi DM (2018) Impact of global change on nutrient dynamics in mangrove forests. For Trees Livelihoods 9:596. https://doi.org/10.3390/f9100596

Article  Google Scholar 

Alongi DM (2020) Nitrogen cycling and mass balance in the world’s mangrove forests. Nitrogen 1:167–189. https://doi.org/10.3390/nitrogen1020014

Article  Google Scholar 

Alongi DM (2005) Mangrove-microbe-soil relations. In: Interactions between macro- and microorganisms in marine sediments. American Geophysical Union, Washington, DC, 60: 85–103. https://doi.org/10.1029/CE060p0085

Alshamsi AAA, Sheteiwy MS, AbuQamar SF, El-Tarabily KA (2024) Enhancement of mangrove growth performance using fish emulsion and halotolerant plant growth-promoting actinobacteria for sustainable management in the UAE. Mar Pollut Bull 199:115916. https://doi.org/10.1016/j.marpolbul.2023.115916

Article  CAS  Google Scholar 

Ameen F, Al-Homaidan AA (2020) Compost inoculated with fungi from a mangrove habitat improved the growth and disease defense of vegetable plants. Sustain Sci Pract Policy 13:124. https://doi.org/10.3390/su13010124

Article  CAS  Google Scholar 

Ananda K, Sridhar KR (2004) Diversity of filamentous fungi on decomposing leaf and woody litter of mangrove forests in the southwest coast of India. Curr Sci 87:1431–1437. https://www.jstor.org/stable/24109484

Angus AA, Hirsch AM (2013) Biofilm formation in the rhizosphere: multispecies interactions and implications for plant growth. In: Molecular microbial ecology of the rhizosphere. Wiley, Hoboken, pp 701–712. https://doi.org/10.1002/9781118297674.ch66

Annapurna K, Kumar A, Kumar LV, et al (2013) PGPR-induced systemic resistance (ISR) in plant disease management. In: Maheshwari DK (ed) Bacteria in agrobiology: disease management. Springer, Berlin, Heidelberg, pp 405–425. https://doi.org/10.1007/978-3-642-33639-3_15

Anneboina LR, Kavi Kumar KS (2017) Economic analysis of mangrove and marine fishery linkages in India. Ecosyst Serv 24:114–123. https://doi.org/10.1016/j.ecoser.2017.02.004

Article  Google Scholar 

Ansari RA, Mahmood I, Rizvi R, et al (2017) Siderophores: augmentation of soil health and crop productivity. In: Kumar V, Kumar M, Sharma S, Prasad R (eds) Probiotics in agroecosystem. Springer, Singapore, pp 291–312. https://doi.org/10.1007/978-981-10-4059-7_15

Arantza S-J, Hiram M-R, Erika K et al (2022) Bio-and phytoremediation: plants and microbes to the rescue of heavy metal polluted soils. SN Appl Sci 4:59. https://doi.org/10.1007/s42452-021-04911-y

Article  CAS  Google Scholar 

Arroyo P, Sáenz de Miera LE, Ansola G (2015) Influence of environmental variables on the structure and composition of soil bacterial communities in natural and constructed wetlands. Sci Total Environ 506–507:380–390. https://doi.org/10.1016/j.scitotenv.2014.11.039

Article  CAS  Google Scholar 

Ashton EC, Hogarth PJ, Ormond R (1999) Breakdown of mangrove leaf litter in a managed mangrove forest in Peninsular Malaysia. In: Diversity and Function in Mangrove Ecosystems. Springer Netherlands, pp 77–88. https://doi.org/10.1007/978-94-011-4078-2_8

Backer R, Rokem JS, Ilangumaran G et al (2018) Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci 9:1473. https://doi.org/10.3389/fpls.2018.01473

Article  Google Scholar 

Bag S, Sarkar B, Seal M et al (2022) Diversity and seasonal prevalence of starch hydrolysing, phosphate solubilizing and nitrogen-fixing bacterial groups of rooted and un-rooted regions of tropical mangrove sediments of Sundarbans, West Bengal, India. Mar Biol Res 18:531–543. https://doi.org/10.1080/17451000.2023.2174263

Article  Google Scholar 

Banerjee A, Sarkar S, Cuadros-Orellana S, Bandopadhyay R (2019) Exopolysaccharides and biofilms in mitigating salinity stress: the biotechnological potential of halophilic and soil-inhabiting PGPR microorganisms. In: Giri B, Varma A (eds) Microorganisms in saline environments: strategies and functions. Springer International Publishing, Cham, pp 133–153. https://doi.org/10.1007/978-3-030-18975-4_6

Barbier EB (2016) The protective service of mangrove ecosystems: a review of valuation methods. Mar Pollut Bull 109:676–681. https://doi.org/10.1016/j.marpolbul.2016.01.033

Article  CAS  Google Scholar 

Barbier EB, Hacker SD, Kennedy C et al (2011) The value of estuarine and coastal ecosystem services. Ecol Monogr 81:169–193. https://doi.org/10.1890/10-1510.1

Article  Google Scholar 

Barraclough AD, Cusens J, Zweifel R, Leuzinger S (2020) Environmental drivers of stem radius change and heterogeneity of stem radial water storage in the mangrove Avicennia marina (Forssk.) Vierh. Agric For Meteorol 280:107764. https://doi.org/10.1016/j.agrformet.2019.107764

Barth HJ, Khan NY (2008) Biogeophysical setting of the Gulf. In: Abuzinada AH, Barth HJ, Krupp F, et al. (eds) Protecting the Gulf’s Marine Ecosystems from Pollution. Birkhäuser, Basel, pp 1–21. https://doi.org/10.1007/978-3-7643-7947-6_1

Bashan Y, Puente ME, Myrold DD, Toledo G (1998) In vitro transfer of fixed nitrogen from diazotrophic filamentous cyanobacteria to black mangrove seedlings. FEMS Microbiol Ecol 26:165–170. https://doi.org/10.1111/j.1574-6941.1998.tb00502.x

Article  CAS  Google Scholar 

Bashan Y, Moreno M, Troyo E (2000) Growth promotion of the seawater-irrigated oilseed halophyte Salicornia bigelovii inoculated with mangrove rhizosphere bacteria and halotolerant Azospirillum spp. Biol Fertil Soils 32:265–272. https://doi.org/10.1007/s003740000246

Article  CAS  Google Scholar 

Bashan Y, Holguin G, De-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50:521–577. https://doi.org/10.1139/w04-035

Article  CAS  Google Scholar 

Bashan Y, Salazar B, Puente ME et al (2009) Enhanced establishment and growth of giant cardon cactus in an eroded field in the Sonoran Desert using native legume trees as nurse plants aided by plant growth-promoting microorganisms and compost. Biol Fertil Soils 45:585–594. https://doi.org/10.1007/s00374-009-0367-x

Article  Google Scholar 

Bashan Y, Kamnev AA, de Bashan LE (2013) Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth: a proposal for an alternative procedure. Biol Fertil Soils 49:465–479. https://doi.org/10.1007/s00374-012-0737-7

Article  CAS  Google Scholar 

Bayen S (2012) Occurrence, bioavailability and toxic effects of trace metals and organic contaminants in mangrove ecosystems: a review. Environ Int 48:84–101. https://doi.org/10.1016/j.envint.2012.07.008

Article  CAS  Google Scholar 

Bayen S, Segovia Estrada E, Zhang H et al (2019) Partitioning and bioaccumulation of legacy and emerging hydrophobic organic chemicals in mangrove ecosystems. Environ Sci Technol 53:2549–2558. https://doi.org/10.1021/acs.est.8b06122

Article  CAS  Google Scholar 

Behera AD, Das S (2023) Ecological insights and potential application of marine filamentous fungi in environmental restoration. Rev Environ Sci Technol 22:281–318. https://doi.org/10.1007/s11157-023-09655-2

Article  Google Scholar 

Behera BC, Singdevsachan SK, Mishra RR et al (2014) Diversity, mechanism and biotechnology of phosphate solubilising microorganism in mangrove—a review. Biocatal Agric Biotechnol 3:97–110. https://doi.org/10.1016/j.bcab.2013.09.008

Article  Google Scholar 

Bhattacharyya A, Majumder NS, Basak P et al (2015) Diversity and distribution of archaea in the mangrove sediment of sundarbans. Archaea 2015:968582. https://doi.org/10.1155/2015/968582

Article  CAS 

留言 (0)

沒有登入
gif