Biological strategies for Bisphenol A degradation: mechanisms and pathways

Acosta DJ, Alper HS (2023) Advances in enzymatic and organismal technologies for the recycling and upcycling of petroleum-derived plastic waste. Curr Opin Biotechnol 84:103021. https://doi.org/10.1016/j.copbio.2023.103021

Article  CAS  Google Scholar 

Afzal M, Khan QM, Sessitsch A (2014) Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants. Chemosphere 117:232–242. https://doi.org/10.1016/j.chemosphere.2014.06.078

Article  CAS  Google Scholar 

Alvarado-Ramírez L, Machorro-García G, López-Legarrea A, Trejo-Ayala D, de Jesús Rostro-Alanis M, Sánchez-Sánchez M, Martín RM, Rodríguez-Rodríguez J, Parra-Saldívar R (2024) Metal-organic frameworks for enzyme immobilization and nanozymes: a laccase-focused review. Biotechnol Adv 70:108299. https://doi.org/10.1016/j.biotechadv.2023.108299

Article  CAS  Google Scholar 

An T, Zu L, Li G, Wan S, Mai B, Wong PK (2011) One-step process for debromination and aerobic mineralization of tetrabromobisphenol-A by a novel Ochrobactrum sp. T isolated from an e-waste recycling site. Bioresour Technol 102(19):9148–9154. https://doi.org/10.1016/j.biortech.2011.06.080

Article  CAS  Google Scholar 

Arias A, Alvarino T, Allegue T, Suárez S, Garrido JM, Omil F (2018) An innovative wastewater treatment technology based on UASB and IFAS for cost-efficient macro and micropollutant removal. J Hazard Mater 359:113–120. https://doi.org/10.1016/j.jhazmat.2018.07.042

Article  CAS  Google Scholar 

Arregui L, Ayala M, Gómez-Gil X, Gutiérrez-Soto G, Hernández-Luna CE, De Los H, Santos M, Levin L, Rojo-Domínguez A, Romero-Martínez D, Saparrat MC, Trujillo-Roldán MA (2019) Laccases: structure, function, and potential application in water bioremediation. Microb Cell Fact 18(1):200. https://doi.org/10.1186/s12934-019-1248-0

Article  CAS  Google Scholar 

Astrahan P, Korzen L, Khanin M, Sharoni Y, Israel Á (2021) Seaweeds fast EDC bioremediation: supporting evidence of EE2 and BPA degradation by the red seaweed Gracilaria sp., and a proposed model for the remedy of marine-borne phenol pollutants. Environ. Pollut. 278:116853. https://doi.org/10.1016/j.envpol.2021.116853

Article  CAS  Google Scholar 

Azizi D, Arif A, Blair D, Dionne J, Filion Y, Ouarda Y, Pazmino AG, Pulicharla R, Rilstone V, Tiwari B, Vignale L, Brar SK, Champagne P, Drogui P, Langlois VS, Blais J-F (2022) A comprehensive review on current technologies for removal of endocrine disrupting chemicals from wastewaters. Environ Res 207:112196. https://doi.org/10.1016/j.envres.2021.112196

Article  CAS  Google Scholar 

Azizullah A, Gao K, Khan S, Gao G (2022) The interplay between bisphenol A and algae-A review. J King Saud Univ Sci. https://doi.org/10.1016/j.jksus.2022.102050

Article  Google Scholar 

Azizullah A, Khan S, Gao G, Gao K (2022b) The interplay between bisphenol A and algae – a review. J King Saud Univ Sci 34(5):102050. https://doi.org/10.1016/j.jksus.2022.102050

Article  Google Scholar 

Balcazar-Lopez E, Mendez-Lorenzo LH, Batista-Garcia RA, Esquivel-Naranjo U, Ayala M, Kumar VV, Savary O, Cabana H, Herrera-Estrella A, Folch-Mallol JL (2016) Xenobiotic compounds degradation by heterologous expression of a trametes sanguineus laccase in trichoderma atroviride. PLoS One 11:e0147997. https://doi.org/10.1371/journal.pone.0147997

Article  CAS  Google Scholar 

Ben Ali R, Ben Ouada S, Leboulanger C, Ammar J, Sayadi S, Ben Ouada H (2021) Bisphenol A removal by the Chlorophyta Picocystis sp: optimization and kinetic study. Int J Phytoremed 23(8):818–828. https://doi.org/10.1080/15226514.2020.1859985

Article  CAS  Google Scholar 

Ben Ouada S, Ben Ali R, Leboulanger C, Ben Ouada H, Sayadi S (2018a) Effect of Bisphenol A on the extremophilic microalgal strain Picocystis sp. (Chlorophyta) and its high BPA removal ability. Ecotoxicol Environ Saf 158:1–8. https://doi.org/10.1016/j.ecoenv.2018.04.008

Article  CAS  Google Scholar 

Ben Ouada S, Ben Ali R, Leboulanger C, Zaghden H, Choura S, Ben Ouada H, Sayadi S (2018b) Effect and removal of bisphenol A by two extremophilic microalgal strains (Chlorophyta). J Appl Phycol 30(3):1765–1776. https://doi.org/10.1007/s10811-017-1386-x

Article  CAS  Google Scholar 

Bereketoglu C, Arga KY, Eraslan S, Mertoglu B (2017) Analysis of transcriptional profiles of Saccharomyces cerevisiae exposed to bisphenol A. Curr Genet 63(2):253–274. https://doi.org/10.1007/s00294-016-0633-z

Article  CAS  Google Scholar 

Bhardwaj P, Kaur N, Selvaraj M, Ghramh HA, Al-Shehri BM, Singh G, Arya SK, Bhatt K, Ghotekar S, Mani R, Chang SW, Ravindran B, Awasthi MK (2022) Laccase-assisted degradation of emerging recalcitrant compounds – A review. Bioresour Technol 364:128031. https://doi.org/10.1016/j.biortech.2022.128031

Article  CAS  Google Scholar 

Bilal M, Zdarta J, Jesionowski T, Iqbal HMN (2023) Manganese peroxidases as robust biocatalytic tool — an overview of sources, immobilization, and biotechnological applications. Int J Biol Macromol 234:123531. https://doi.org/10.1016/j.ijbiomac.2023.123531

Article  CAS  Google Scholar 

Brugnari T, Pereira MG, Bubna GA, de Freitas EN, Contato AG, Corrêa RC, Castoldi R, de Souza CG, de Moraes MD, Bracht A, Peralta RM (2018) A highly reusable MANAE-agarose-immobilized Pleurotus ostreatus laccase for degradation of bisphenol A. Sci Total Environ 634:1346–1351. https://doi.org/10.1016/j.scitotenv.2018.04.051

Article  CAS  Google Scholar 

Brugnari T, Contato AG, Pereira MG, Freitas EN, Bubna GA, Aranha GM, Bracht A, Polizeli MD, Peralta RM (2021) Characterisation of free and immobilised laccases from Ganoderma lucidum: application on bisphenol a degradation. Biocatal Biotransform 39(1):71–80. https://doi.org/10.1080/10242422.2020.1792448

Article  CAS  Google Scholar 

Cajthaml T, Křesinová Z, Svobodová K, Möder M (2009) Biodegradation of endocrine-disrupting compounds and suppression of estrogenic activity by ligninolytic fungi. Chemosphere 75(6):745–750. https://doi.org/10.1016/j.chemosphere.2009.01.034

Article  CAS  Google Scholar 

Cao P, Zhong H-N, Qiu K, Li D, Wu G, Sui H-X, Song Y (2021) Exposure to bisphenol A and its substitutes, bisphenol F and bisphenol S from canned foods and beverages on Chinese market. Food Control 120:107502. https://doi.org/10.1016/j.foodcont.2020.107502

Article  CAS  Google Scholar 

Carbó M, Chaturvedi P, Álvarez A, Pineda-Cevallos D, Ghatak A, González PR, Cañal MJ, Weckwerth W, Valledor L (2023) Ferroptosis is the key cellular process mediating Bisphenol A responses in Chlamydomonas and a promising target for enhancing microalgae-based bioremediation. J Hazard Mater 448:130997. https://doi.org/10.1016/j.jhazmat.2023.130997

Article  CAS  Google Scholar 

Carstens L, Cowan AR, Seiwert B, Schlosser D (2020) Biotransformation of phthalate plasticizers and bisphenol a by marine-derived, freshwater, and terrestrial fungi. Front Microbiol 11:317. https://doi.org/10.3389/fmicb.2020.00317

Article  Google Scholar 

Chairin T, Nitheranont T, Watanabe A, Asada Y, Khanongnuch C, Lumyong S (2013) Biodegradation of Bisphenol A and decolorization of synthetic dyes by laccase from white-rot fungus. Trametes Polyzona Appl Biochem Biotechnol 169(2):539–545. https://doi.org/10.1007/s12010-012-9990-3

Article  CAS  Google Scholar 

Chang Y-C, Fuzisawa S, Reddy MV, Kobayashi H, Yoshida E, Yajima Y, Hoshino T, Choi D (2016) Degradation of toxic compounds at low and medium temperature conditions using isolated fungus. Clean-Soil Air Water 44(8):992–1000. https://doi.org/10.1002/clen.201500753

Article  CAS  Google Scholar 

Chen D, Kannan K, Tan H, Zheng Z, Feng Y-L, Wu Y, Widelka M (2016) Bisphenol analogues other than BPA: environmental occurrence, human exposure, and toxicity—a review. Environ Sci Technol 50(11):5438–5453. https://doi.org/10.1021/acs.est.5b05387

Article  CAS  Google Scholar 

Cheng F, Wang JL (2024) Regulation of reactive species during ionizing radiation by peroxydisulfate for enhanced degradation of typical pollutants in coking wastewater. Environ Poll. https://doi.org/10.1016/j.envpol.2024.124581

Article  Google Scholar 

Cheng F, Wang JL (2024b) Removal of bisphenol a from wastewater by adsorption and membrane separation: performances and mechanisms. Chem Eng J 484:149414. https://doi.org/10.1016/j.cej.2024.149414

Article  CAS  Google Scholar 

Cheng F, Zhou P, Huo X, Liu Y, Liu Y, Zhang Y (2020) Enhancement of bisphenol A degradation by accelerating the Fe(III)/Fe(II) cycle in graphene oxide modified Fe(III)/peroxymonosulfate system under visible light irradiation. J Colloid Interf Sci 580:540–549. https://doi.org/10.1016/j.jcis.2020.07.029

Article  CAS  Google Scholar 

Chhaya U, Gupte A (2013) Possible role of laccase from Fusarium incarnatum UC-14 in bioremediation of Bisphenol A using reverse micelles system. J Hazard Mater 254:149–156. https://doi.org/10.1016/j.jhazmat.2013.03.054

Article  CAS  Google Scholar 

Choi YJ, Nies LF, Lee LS (2021) Persistence of three bisphenols and other trace organics of concern in anaerobic sludge under methanogenic conditions. Environ Technol 42(9):1373–1382. https://doi.org/10.1080/09593330.2019.1668966

Article 

留言 (0)

沒有登入
gif