Bruton OC, Agammaglobulinemia. Pediatrics. 1952;9(6):722–8.
Vetrie D, Vorechovský I, Sideras P, Holland J, Davies A, Flinter F, et al. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature. 1993;361(6409):226–33.
Article CAS PubMed Google Scholar
Burger JA. BTK inhibitors: present and future. Cancer J (Sudbury Mass). 2019;25(6):386.
Szilveszter KP, Németh T, Mócsai A. Tyrosine kinases in autoimmune and inflammatory skin diseases. Front Immunol. 2019;10:1862.
Article CAS PubMed PubMed Central Google Scholar
Rip J, De Bruijn MJ, Appelman MK, Pal Singh S, Hendriks RW, Corneth OB. Toll-like receptor signaling drives btk-mediated autoimmune disease. Front Immunol. 2019;10:95.
Article CAS PubMed PubMed Central Google Scholar
Robak E, Robak T. Bruton’s kinase inhibitors for the treatment of Immunological diseases: current status and perspectives. J Clin Med. 2022;11(10):2807.
Article CAS PubMed PubMed Central Google Scholar
Hendriks RW, Yuvaraj S, Kil LP. Targeting Bruton’s tyrosine kinase in B cell malignancies. Nat Rev Cancer. 2014;14(4):219–32.
Article CAS PubMed Google Scholar
Kil LP, De Bruijn MJ, Van Nimwegen M, Corneth OB, Van Hamburg JP, Dingjan GM, et al. Btk levels set the threshold for B-cell activation and negative selection of autoreactive B cells in mice. Blood J Am Soc Hematol. 2012;119(16):3744–56.
Park JK, Byun J-Y, Park JA, Kim Y-Y, Lee YJ, Oh JI, et al. HM71224, a novel Bruton’s tyrosine kinase inhibitor, suppresses B cell and monocyte activation and ameliorates arthritis in a mouse model: a potential drug for rheumatoid arthritis. Arthritis Res Therapy. 2016;18(1):1–9.
Liu L, Di Paolo J, Barbosa J, Rong H, Reif K, Wong H. Antiarthritis effect of a novel Bruton’s tyrosine kinase (BTK) inhibitor in rat collagen-induced arthritis and mechanism-based pharmacokinetic/pharmacodynamic modeling: relationships between inhibition of BTK phosphorylation and efficacy. J Pharmacol Exp Ther. 2011;338(1):154–63.
Article CAS PubMed Google Scholar
Evans EK, Tester R, Aslanian S, Karp R, Sheets M, Labenski MT, et al. Inhibition of Btk with CC-292 provides early pharmacodynamic assessment of activity in mice and humans. J Pharmacol Exp Ther. 2013;346(2):219–28.
Article CAS PubMed Google Scholar
Niiro H, Clark EA. Regulation of B-cell fate by antigen-receptor signals. Nat Rev Immunol. 2002;2(12):945–56.
Article CAS PubMed Google Scholar
Zarrin AA, Bao K, Lupardus P, Vucic D. Kinase inhibition in autoimmunity and inflammation. Nat Rev Drug Discovery. 2021;20(1):39–63.
Article CAS PubMed Google Scholar
McDonald C, Xanthopoulos C, Kostareli E. The role of Bruton’s tyrosine kinase in the immune system and disease. Immunology. 2021;164(4):722–36.
Article CAS PubMed PubMed Central Google Scholar
Zhang D, Gong H, Meng F. Recent advances in BTK inhibitors for the treatment of inflammatory and autoimmune diseases. Molecules. 2021;26(16):4907.
Article CAS PubMed PubMed Central Google Scholar
Buggy JJ, Elias L. Bruton tyrosine kinase (BTK) and its role in B-cell malignancy. Int Rev Immunol. 2012;31(2):119–32.
Article CAS PubMed Google Scholar
Owens TD, Brameld KA, Verner EJ, Ton T, Li X, Zhu J, et al. Discovery of Reversible Covalent Bruton’s tyrosine kinase inhibitors PRN473 and PRN1008 (Rilzabrutinib). J Med Chem. 2022;65(7):5300–16.
Article CAS PubMed Google Scholar
Lewis KL, Cheah CY, Non-Covalent BTK. Inhibitors-the New BTKids on the Block for B-Cell malignancies. J Pers Med. 2021;11(8).
Burger JA, Ghia P, Rosenwald A, Caligaris-Cappio F. The microenvironment in mature B-cell malignancies: a target for new treatment strategies. Blood J Am Soc Hematol. 2009;114(16):3367–75.
Li R, Tang H, Burns JC, Hopkins BT, Le Coz C, Zhang B, et al. BTK inhibition limits B-cell–T-cell interaction through modulation of B-cell metabolism: implications for multiple sclerosis therapy. Acta Neuropathol. 2022;143(4):505–21.
Article CAS PubMed PubMed Central Google Scholar
Fraussen J, Claes N, Van Wijmeersch B, van Horssen J, Stinissen P, Hupperts R, et al. B cells of multiple sclerosis patients induce autoreactive proinflammatory T cell responses. Clin Immunol. 2016;173:124–32.
Article CAS PubMed Google Scholar
Zain R, Vihinen M. Structure-function relationships of covalent and non-covalent BTK inhibitors. Front Immunol. 2021:2675.
LLC P. IMBRUVICA®(ibrutinib) Prescribing Information. Pharmacyclics, LLC Sunnyvale, CA; 2017.
Ran F, Liu Y, Wang C, Xu Z, Zhang Y, Liu Y et al. Review of the development of BTK inhibitors in overcoming the clinical limitations of ibrutinib. Eur J Med Chem. 2021:114009.
Thompson PA, Burger JA. Bruton’s tyrosine kinase inhibitors: first and second generation agents for patients with chronic lymphocytic leukemia (CLL). Expert opinion on investigational drugs. 2018;27(1):31–42.
Yosifov DY, Wolf C, Stilgenbauer S, Mertens D. From biology to therapy: the CLL success story. HemaSphere. 2019;3(2).
Naik PP. Translational autoimmunity in pemphigus and the role of novel Bruton tyrosine kinase inhibitors. J Translational Autoimmun. 2022:100156.
Schmidt E, Kasperkiewicz M, Joly. P1: CAS: 528: DC% 2BC1MXhsleltrjO. vol. 394, issue 10201. Pemphigus Lancet. 2019:882– 94.
Murrell D, Patsatsi A, Stavropoulos P, Baum S, Zeeli T, Kern J, et al. Proof of concept for the clinical effects of oral rilzabrutinib, the first Bruton tyrosine kinase inhibitor for pemphigus vulgaris: the phase II BELIEVE study. Br J Dermatol. 2021;185(4):745–55.
Article CAS PubMed PubMed Central Google Scholar
Altman EM. Novel therapies for Pemphigus Vulgaris. Am J Clin Dermatol. 2020;21(6):765–82.
Smith PF, Krishnarajah J, Nunn PA, Hill RJ, Karr D, Tam D, et al. A phase I trial of PRN1008, a novel reversible covalent inhibitor of Bruton’s tyrosine kinase, in healthy volunteers. Br J Clin Pharmacol. 2017;83(11):2367–76.
Article CAS PubMed PubMed Central Google Scholar
Sanofi provides update on Phase. 3 study evaluating rilzabrutinib for the treatment of pemphigus: Sanofi. https://www.sanofi.com/en/media-room/press-releases/2021/2021-09-09-05-00-00-2293920
Murrell DF, Patsatsi A, Stavropoulos P, Baum S, Zeeli T, Kern JS et al. Phase 2 BELIEVE study part B: efficacy and safety of rilzabrutinib for patients with pemphigus vulgaris. J Eur Acad Dermatol Venereol. 2022.
Goodale EC, Varjonen KE, Outerbridge CA, Bizikova P, Borjesson D, Murrell DF, et al. Efficacy of a Bruton’s tyrosine kinase inhibitor (PRN-473) in the treatment of canine pemphigus foliaceus. Vet Dermatol. 2020;31(4):291–e71.
Lee A, Sandhu S, Imlay-Gillespie L, Mulligan S, Shumack S. Successful use of Bruton’s kinase inhibitor, ibrutinib, to control paraneoplastic pemphigus in a patient with paraneoplastic autoimmune multiorgan syndrome and chronic lymphocytic leukaemia. Australas J Dermatol. 2017;58(4):e240–2.
Ito Y, Makita S, Maeshima AM, Hatta S, Suzuki T, Yuda S et al. Paraneoplastic pemphigus associated with B-cell chronic lymphocytic leukemia treated with ibrutinib and rituximab. Intern Med. 2018:0578–17.
Ariza Y, Murata M, Ueda Y, Yoshizawa T. Bruton’s tyrosine kinase (btk) inhibitor tirabrutinib suppresses osteoclastic bone resorption. Bone Rep. 2019;10:100201.
Article PubMed PubMed Central Google Scholar
Yamagami J, Ujiie H, Aoyama Y, Ishii N, Tateishi C, Ishiko A, et al. A multicenter, open-label, uncontrolled, single-arm phase 2 study of tirabrutinib, an oral Bruton’s tyrosine kinase inhibitor, in pemphigus. J Dermatol Sci. 2021;103(3):135–42.
Article CAS PubMed Google Scholar
Hertl M, Jedlickova H, Karpati S, Marinovic B, Uzun S, Yayli S, et al. Pemphigus. S2 Guideline for diagnosis and treatment–guided by the European Dermatology Forum (EDF) in cooperation with the European Academy of Dermatology and Venereology (EADV). J Eur Acad Dermatol Venereol. 2015;29(3):405–14.
Article CAS PubMed Google Scholar
Yuan H, Pan M, Chen H, Mao X. Immunotherapy for Pemphigus: Present and Future. Front Med. 2022:1551.
Xing Y, Chu KA, Wadhwa J, Chen W, Zhu J, Bradshaw JM, et al. Preclinical mechanisms of topical PRN473, a Bruton Tyrosine Kinase inhibitor, in immune-mediated skin disease models. ImmunoHorizons. 2021;5(7):581–9.
留言 (0)