Liu D, Wang H, Li X, Liu J, Zhang Y, Hu J. Small molecule inhibitors for cancer metabolism: promising prospects to be explored. J Cancer Res Clin Oncol. 2023;149(10):8051–76.
Ma K, Zhang L. Overview: lipid metabolism in the tumor microenvironment. Lipid Metabolism Tumor Immun. 2021:41–7.
Khan W, Augustine D, Rao RS, Patil S, Awan KH, Sowmya SV, et al. Lipid metabolism in cancer: a systematic review. J Carcinog. 2021;20.
Chen F, Zhuang X, Lin L, Yu P, Wang Y, Shi Y, et al. New horizons in tumor microenvironment biology: challenges and opportunities. BMC Med. 2015;13:1–14.
Colletti M, Ceglie D, Di Giannatale A, Nazio F. Autophagy and exosomes relationship in cancer: friends or foes? Front Cell Dev Biology. 2021;8:614178.
Subramanian V, Bairwa RK, Sharma PK, Bissa B. Cancer cell’s internal and external warriors: autophagosomes and exosomes. Life Sci. 2022;300:120552.
Yu W, Lei Q, Yang L, Qin G, Liu S, Wang D, et al. Contradictory roles of lipid metabolism in immune response within the tumor microenvironment. J Hematol Oncol. 2021;14:1–19.
Zalpoor H, Aziziyan F, Liaghat M, Bakhtiyari M, Akbari A, Nabi-Afjadi M, et al. The roles of metabolic profiles and intracellular signaling pathways of tumor microenvironment cells in angiogenesis of solid tumors. Cell Communication Signal. 2022;20(1):186.
Zhang S, Lv K, Liu Z, Zhao R, Li F. Fatty acid metabolism of immune cells: a new target of tumour immunotherapy. Cell Death Discovery. 2024;10(1):39.
Article CAS PubMed PubMed Central Google Scholar
Yue B. Biology of the extracellular matrix: an overview. J Glaucoma. 2014;23:S20–3.
Romani P, Brian I, Santinon G, Pocaterra A, Audano M, Pedretti S, et al. Extracellular matrix mechanical cues regulate lipid metabolism through Lipin-1 and SREBP. Nat Cell Biol. 2019;21(3):338–47.
Article CAS PubMed Google Scholar
Saydakova S, Morozova K, Kiseleva E. Lipin family proteins: structure, functions, and related diseases. Cell Tissue Biology. 2021;15:317–25.
Meana C, García-Rostán G, Peña L, Lordén G, Cubero Á, Orduña A, et al. The phosphatidic acid phosphatase lipin-1 facilitates inflammation-driven colon carcinogenesis. JCI Insight. 2018;3(18).
Shimano H, Sato R. SREBP-regulated lipid metabolism: convergent physiology—divergent pathophysiology. Nat Reviews Endocrinol. 2017;13(12):710–30.
Bao J, Zhu L, Zhu Q, Su J, Liu M, Huang W. SREBP–1 is an independent prognostic marker and promotes invasion and migration in breast cancer. Oncol Lett. 2016;12(4):2409–16.
Article CAS PubMed PubMed Central Google Scholar
Balaban S, Shearer RF, Lee LS, van Geldermalsen M, Schreuder M, Shtein HC, et al. Adipocyte lipolysis links obesity to breast cancer growth: adipocyte-derived fatty acids drive breast cancer cell proliferation and migration. Cancer Metabolism. 2017;5:1–14.
Article PubMed PubMed Central Google Scholar
Vasseur S, Guillaumond F. Lipids in cancer: a global view of the contribution of lipid pathways to metastatic formation and treatment resistance. Oncogenesis. 2022;11(1):46.
Article CAS PubMed PubMed Central Google Scholar
Zaidi N, Swinnen JV, Smans K. ATP-citrate lyase: a key player in cancer metabolism. Cancer Res. 2012;72(15):3709–14.
Article CAS PubMed Google Scholar
Mashima T, Seimiya H, Tsuruo T. De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy. Br J Cancer. 2009;100(9):1369–72.
Article CAS PubMed PubMed Central Google Scholar
Chabowski A, Górski J, Luiken JJ, Glatz JF, Bonen A. Evidence for concerted action of FAT/CD36 and FABPpm to increase fatty acid transport across the plasma membrane. Prostaglandins Leukot Essent Fatty Acids. 2007;77(5–6):345–53.
Article CAS PubMed Google Scholar
Berk P, Wada H, Horio Y, Potter B, Sorrentino D, Zhou S-L, et al. Plasma membrane fatty acid-binding protein and mitochondrial glutamic-oxaloacetic transaminase of rat liver are related. Proc Natl Acad Sci U S A. 1990;87(9):3484–8.
Xiao M, Xu J, Wang W, Zhang B, Liu J, Li J, et al. Functional significance of cholesterol metabolism in cancer: from threat to treatment. Exp Mol Med. 2023;55(9):1982–95.
Article CAS PubMed PubMed Central Google Scholar
Wu G, Aoyama C, Young SG, Vance DE. Early embryonic lethality caused by disruption of the gene for choline kinase α, the first enzyme in phosphatidylcholine biosynthesis. J Biol Chem. 2008;283(3):1456–62.
Article CAS PubMed Google Scholar
Fu Y, Zou T, Shen X, Nelson PJ, Li J, Wu C, et al. Lipid metabolism in cancer progression and therapeutic strategies. MedComm. 2021;2(1):27–59.
Article CAS PubMed Google Scholar
Chang C-H, Qiu J, O’Sullivan D, Buck MD, Noguchi T, Curtis JD, et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell. 2015;162(6):1229–41.
Article CAS PubMed PubMed Central Google Scholar
Kopecka J, Godel M, Riganti C. Cholesterol metabolism: at the cross road between cancer cells and immune environment. Int J Biochem Cell Biol. 2020;129:105876.
Article CAS PubMed Google Scholar
Murakami M, Sato H, Miki Y, Yamamoto K, Taketomi Y. Thematic Review Series: Phospholipases: central role in lipid signaling and disease: a new era of secreted phospholipase A2. J Lipid Res. 2015;56(7):1248.
Article CAS PubMed PubMed Central Google Scholar
Murata K, Egami H, Kiyohara H, Oshima S, Kurizaki T, Ogawa M. Expression of group-II phospholipase A2 in malignant and non-malignant human gastric mucosa. Br J Cancer. 1993;68(1):103–11.
Article CAS PubMed PubMed Central Google Scholar
Murakami M, Sato H, Taketomi Y. Modulation of immunity by the secreted phospholipase A2 family. Immunol Rev. 2023;317(1):42–70.
Article CAS PubMed Google Scholar
Greten FR, Grivennikov SI. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity. 2019;51(1):27–41.
Article CAS PubMed PubMed Central Google Scholar
Bao Q, Huang Q, Chen Y, Wang Q, Sang R, Wang L, et al. Tumor-derived extracellular vesicles regulate cancer progression in the tumor microenvironment. Front Mol Biosci. 2022;8:796385.
Article PubMed PubMed Central Google Scholar
Huda MN, Nafiujjaman M, Deaguero IG, Okonkwo J, Hill ML, Kim T, et al. Potential use of exosomes as diagnostic biomarkers and in targeted drug delivery: progress in clinical and preclinical applications. ACS Biomaterials Sci Eng. 2021;7(6):2106–49.
Minciacchi VR, Freeman MR, Di Vizio D, editors. Extracellular vesicles in cancer: exosomes, microvesicles and the emerging role of large oncosomes. Seminars in cell & developmental biology. Elsevier; 2015.
Ciardiello C, Migliorino R, Leone A, Budillon A. Large extracellular vesicles: size matters in tumor progression. Cytokine Growth Factor Rev. 2020;51:69–74.
Article CAS PubMed Google Scholar
Muralidharan-Chari V, Clancy JW, Sedgwick A, D’Souza-Schorey C. Microvesicles: mediators of extracellular communication during cancer progression. J Cell Sci. 2010;123(10):1603–11.
Article CAS PubMed PubMed Central Google Scholar
van Dommelen SM, Vader P, Lakhal S, Kooijmans S, van Solinge WW, Wood MJ, et al. Microvesicles and exosomes: opportunities for cell-derived membrane vesicles in drug delivery. J Co
留言 (0)