Lipid metabolism associated crosstalk: the bidirectional interaction between cancer cells and immune/stromal cells within the tumor microenvironment for prognostic insight

Liu D, Wang H, Li X, Liu J, Zhang Y, Hu J. Small molecule inhibitors for cancer metabolism: promising prospects to be explored. J Cancer Res Clin Oncol. 2023;149(10):8051–76.

Article  PubMed  Google Scholar 

Ma K, Zhang L. Overview: lipid metabolism in the tumor microenvironment. Lipid Metabolism Tumor Immun. 2021:41–7.

Khan W, Augustine D, Rao RS, Patil S, Awan KH, Sowmya SV, et al. Lipid metabolism in cancer: a systematic review. J Carcinog. 2021;20.

Chen F, Zhuang X, Lin L, Yu P, Wang Y, Shi Y, et al. New horizons in tumor microenvironment biology: challenges and opportunities. BMC Med. 2015;13:1–14.

Article  Google Scholar 

Colletti M, Ceglie D, Di Giannatale A, Nazio F. Autophagy and exosomes relationship in cancer: friends or foes? Front Cell Dev Biology. 2021;8:614178.

Article  Google Scholar 

Subramanian V, Bairwa RK, Sharma PK, Bissa B. Cancer cell’s internal and external warriors: autophagosomes and exosomes. Life Sci. 2022;300:120552.

Article  Google Scholar 

Yu W, Lei Q, Yang L, Qin G, Liu S, Wang D, et al. Contradictory roles of lipid metabolism in immune response within the tumor microenvironment. J Hematol Oncol. 2021;14:1–19.

Article  Google Scholar 

Zalpoor H, Aziziyan F, Liaghat M, Bakhtiyari M, Akbari A, Nabi-Afjadi M, et al. The roles of metabolic profiles and intracellular signaling pathways of tumor microenvironment cells in angiogenesis of solid tumors. Cell Communication Signal. 2022;20(1):186.

Article  CAS  Google Scholar 

Zhang S, Lv K, Liu Z, Zhao R, Li F. Fatty acid metabolism of immune cells: a new target of tumour immunotherapy. Cell Death Discovery. 2024;10(1):39.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yue B. Biology of the extracellular matrix: an overview. J Glaucoma. 2014;23:S20–3.

Article  PubMed  Google Scholar 

Romani P, Brian I, Santinon G, Pocaterra A, Audano M, Pedretti S, et al. Extracellular matrix mechanical cues regulate lipid metabolism through Lipin-1 and SREBP. Nat Cell Biol. 2019;21(3):338–47.

Article  CAS  PubMed  Google Scholar 

Saydakova S, Morozova K, Kiseleva E. Lipin family proteins: structure, functions, and related diseases. Cell Tissue Biology. 2021;15:317–25.

Article  CAS  Google Scholar 

Meana C, García-Rostán G, Peña L, Lordén G, Cubero Á, Orduña A, et al. The phosphatidic acid phosphatase lipin-1 facilitates inflammation-driven colon carcinogenesis. JCI Insight. 2018;3(18).

Shimano H, Sato R. SREBP-regulated lipid metabolism: convergent physiology—divergent pathophysiology. Nat Reviews Endocrinol. 2017;13(12):710–30.

Article  CAS  Google Scholar 

Bao J, Zhu L, Zhu Q, Su J, Liu M, Huang W. SREBP–1 is an independent prognostic marker and promotes invasion and migration in breast cancer. Oncol Lett. 2016;12(4):2409–16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Balaban S, Shearer RF, Lee LS, van Geldermalsen M, Schreuder M, Shtein HC, et al. Adipocyte lipolysis links obesity to breast cancer growth: adipocyte-derived fatty acids drive breast cancer cell proliferation and migration. Cancer Metabolism. 2017;5:1–14.

Article  PubMed  PubMed Central  Google Scholar 

Vasseur S, Guillaumond F. Lipids in cancer: a global view of the contribution of lipid pathways to metastatic formation and treatment resistance. Oncogenesis. 2022;11(1):46.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zaidi N, Swinnen JV, Smans K. ATP-citrate lyase: a key player in cancer metabolism. Cancer Res. 2012;72(15):3709–14.

Article  CAS  PubMed  Google Scholar 

Mashima T, Seimiya H, Tsuruo T. De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy. Br J Cancer. 2009;100(9):1369–72.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chabowski A, Górski J, Luiken JJ, Glatz JF, Bonen A. Evidence for concerted action of FAT/CD36 and FABPpm to increase fatty acid transport across the plasma membrane. Prostaglandins Leukot Essent Fatty Acids. 2007;77(5–6):345–53.

Article  CAS  PubMed  Google Scholar 

Berk P, Wada H, Horio Y, Potter B, Sorrentino D, Zhou S-L, et al. Plasma membrane fatty acid-binding protein and mitochondrial glutamic-oxaloacetic transaminase of rat liver are related. Proc Natl Acad Sci U S A. 1990;87(9):3484–8.

Xiao M, Xu J, Wang W, Zhang B, Liu J, Li J, et al. Functional significance of cholesterol metabolism in cancer: from threat to treatment. Exp Mol Med. 2023;55(9):1982–95.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu G, Aoyama C, Young SG, Vance DE. Early embryonic lethality caused by disruption of the gene for choline kinase α, the first enzyme in phosphatidylcholine biosynthesis. J Biol Chem. 2008;283(3):1456–62.

Article  CAS  PubMed  Google Scholar 

Fu Y, Zou T, Shen X, Nelson PJ, Li J, Wu C, et al. Lipid metabolism in cancer progression and therapeutic strategies. MedComm. 2021;2(1):27–59.

Article  CAS  PubMed  Google Scholar 

Chang C-H, Qiu J, O’Sullivan D, Buck MD, Noguchi T, Curtis JD, et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell. 2015;162(6):1229–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kopecka J, Godel M, Riganti C. Cholesterol metabolism: at the cross road between cancer cells and immune environment. Int J Biochem Cell Biol. 2020;129:105876.

Article  CAS  PubMed  Google Scholar 

Murakami M, Sato H, Miki Y, Yamamoto K, Taketomi Y. Thematic Review Series: Phospholipases: central role in lipid signaling and disease: a new era of secreted phospholipase A2. J Lipid Res. 2015;56(7):1248.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Murata K, Egami H, Kiyohara H, Oshima S, Kurizaki T, Ogawa M. Expression of group-II phospholipase A2 in malignant and non-malignant human gastric mucosa. Br J Cancer. 1993;68(1):103–11.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Murakami M, Sato H, Taketomi Y. Modulation of immunity by the secreted phospholipase A2 family. Immunol Rev. 2023;317(1):42–70.

Article  CAS  PubMed  Google Scholar 

Greten FR, Grivennikov SI. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity. 2019;51(1):27–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bao Q, Huang Q, Chen Y, Wang Q, Sang R, Wang L, et al. Tumor-derived extracellular vesicles regulate cancer progression in the tumor microenvironment. Front Mol Biosci. 2022;8:796385.

Article  PubMed  PubMed Central  Google Scholar 

Huda MN, Nafiujjaman M, Deaguero IG, Okonkwo J, Hill ML, Kim T, et al. Potential use of exosomes as diagnostic biomarkers and in targeted drug delivery: progress in clinical and preclinical applications. ACS Biomaterials Sci Eng. 2021;7(6):2106–49.

Article  CAS  Google Scholar 

Minciacchi VR, Freeman MR, Di Vizio D, editors. Extracellular vesicles in cancer: exosomes, microvesicles and the emerging role of large oncosomes. Seminars in cell & developmental biology. Elsevier; 2015.

Ciardiello C, Migliorino R, Leone A, Budillon A. Large extracellular vesicles: size matters in tumor progression. Cytokine Growth Factor Rev. 2020;51:69–74.

Article  CAS  PubMed  Google Scholar 

Muralidharan-Chari V, Clancy JW, Sedgwick A, D’Souza-Schorey C. Microvesicles: mediators of extracellular communication during cancer progression. J Cell Sci. 2010;123(10):1603–11.

Article  CAS  PubMed  PubMed Central  Google Scholar 

van Dommelen SM, Vader P, Lakhal S, Kooijmans S, van Solinge WW, Wood MJ, et al. Microvesicles and exosomes: opportunities for cell-derived membrane vesicles in drug delivery. J Co

留言 (0)

沒有登入
gif