Gut Microbiome in Children with Congenital Heart Disease After Cardiopulmonary Bypass Surgery (GuMiBear Study)

Hoffman JI (1990) Congenital heart disease: incidence and inheritance. Pediatr Clin North Am 37(1):25–43

Article  CAS  PubMed  Google Scholar 

Magner C, Jenkins D, Koc F, Tan MH, O’Toole M, Boyle J et al (2023) Protocol for a prospective cohort study exploring the gut microbiota of infants with congenital heart disease undergoing cardiopulmonary bypass (the GuMiBear study). BMJ Open 13(3):e067016

Article  PubMed  PubMed Central  Google Scholar 

Mandalenakis Z, Giang KW, Eriksson P, Liden H, Synnergren M, Wahlander H et al (2020) Survival in children with congenital heart disease: have we reached a peak at 97%? J Am Heart Assoc 9(22):e017704

Article  PubMed  PubMed Central  Google Scholar 

Rosamond W, Flegal K, Friday G, Furie K, Go A, Greenlund K et al (2007) Heart disease and stroke statistics–2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 115(5):e69

Article  PubMed  Google Scholar 

Plana MN, Zamora J, Suresh G, Fernandez-Pineda L, Thangaratinam S, Ewer AK (2018) Pulse oximetry screening for critical congenital heart defects. Cochrane Database Systematic Rev. https://doi.org/10.1002/14651858.CD011912.pub2

Article  Google Scholar 

Goldberg JF (2015) Long-term follow-up of “Simple” lesions-atrial septal defect, ventricular septal defect, and coarctation of the aorta. Congenit Heart Dis 10(5):466–474

Article  PubMed  Google Scholar 

Gerritsen J, Smidt H, Rijkers GT, de Vos WM (2011) Intestinal microbiota in human health and disease: the impact of probiotics. Genes Nutr 6(3):209–240

Article  PubMed  PubMed Central  Google Scholar 

Hill CJ, Lynch DB, Murphy K, Ulaszewska M, Jeffery IB, O’Shea CA et al (2017) Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET Cohort. Microbiome 5(1):4

Article  PubMed  PubMed Central  Google Scholar 

Borre YE, O’Keeffe GW, Clarke G, Stanton C, Dinan TG, Cryan JF (2014) Microbiota and neurodevelopmental windows: implications for brain disorders. Trends Mol Med 20(9):509–518

Article  PubMed  Google Scholar 

Kelleher ST, McMahon CJ, James A (2021) Necrotizing enterocolitis in children with congenital heart disease: a literature review. Pediatr Cardiol 42(8):1688–1699

Article  PubMed  PubMed Central  Google Scholar 

Huang Y, Lu W, Zeng M, Hu X, Su Z, Liu Y et al (2022) Mapping the early life gut microbiome in neonates with critical congenital heart disease: multiomics insights and implications for host metabolic and immunological health. Microbiome 10(1):245

Article  PubMed  PubMed Central  Google Scholar 

Whiting D, Yuki K, DiNardo JA (2015) Cardiopulmonary bypass in the pediatric population. Best Pract Res Clin Anaesthesiol 29(2):241–256

Article  PubMed  Google Scholar 

Halter J, Steinberg J, Fink G, Lutz C, Picone A, Maybury R et al (2005) Evidence of systemic cytokine release in patients undergoing cardiopulmonary bypass. J Extra Corpor Technol 37(3):272–277

Article  PubMed  PubMed Central  Google Scholar 

Gogos CA, Drosou E, Bassaris HP, Skoutelis A (2000) Pro- versus anti-inflammatory cytokine profile in patients with severe sepsis: a marker for prognosis and future therapeutic options. J Infect Dis 181(1):176–180

Article  CAS  PubMed  Google Scholar 

Salomon J, Ericsson A, Price A, Manithody C, Murry DJ, Chhonker YS et al (2021) Dysbiosis and intestinal barrier dysfunction in pediatric congenital heart disease is exacerbated following cardiopulmonary bypass. JACC Basic Transl Sci 6(4):311–327

Article  PubMed  PubMed Central  Google Scholar 

Typpo KV, Larmonier CB, Deschenes J, Redford D, Kiela PR, Ghishan FK (2015) Clinical characteristics associated with postoperative intestinal epithelial barrier dysfunction in children with congenital heart disease. Pediatr Crit Care Med 16(1):37–44

Article  PubMed  PubMed Central  Google Scholar 

Salomon JD, Qiu H, Feng D, Owens J, Khailova L, Osorio Lujan S et al (2023) Piglet cardiopulmonary bypass induces intestinal dysbiosis and barrier dysfunction associated with systemic inflammation. Dis Model Mech. https://doi.org/10.1242/dmm.049742

Article  PubMed  PubMed Central  Google Scholar 

Drennan SE, Burge KY, Szyld EG, Eckert JV, Mir AM, Gormley AK et al (2021) Clinical and laboratory predictors for the development of low cardiac output syndrome in infants undergoing cardiopulmonary bypass: a pilot study. J Clin Med 10(4):712

Article  PubMed  PubMed Central  Google Scholar 

Sinclair DG, Haslam PL, Quinlan GJ, Pepper JR, Evans TW (1995) The effect of cardiopulmonary bypass on intestinal and pulmonary endothelial permeability. Chest 108(3):718–724

Article  CAS  PubMed  Google Scholar 

Chandler HK, Kirsch R (2016) Management of the low cardiac output syndrome following surgery for congenital heart disease. Curr Cardiol Rev 12(2):107–111

Article  PubMed  PubMed Central  Google Scholar 

Wessel DL (2001) Managing low cardiac output syndrome after congenital heart surgery. Crit Care Med 29(10 Suppl):S220–S230

Article  CAS  PubMed  Google Scholar 

Cremer J, Martin M, Redl H, Bahrami S, Abraham C, Graeter T et al (1996) Systemic inflammatory response syndrome after cardiac operations. Ann Thorac Surg 61(6):1714–1720

Article  CAS  PubMed  Google Scholar 

Du X, Chen H, Song X, Wang S, Hao Z, Yin L et al (2020) Risk factors for low cardiac output syndrome in children with congenital heart disease undergoing cardiac surgery: a retrospective cohort study. BMC Pediatr 20(1):87

Article  CAS  PubMed  PubMed Central  Google Scholar 

Robert SM, Borasino S, Dabal RJ, Cleveland DC, Hock KM, Alten JA (2015) Postoperative hydrocortisone infusion reduces the prevalence of low cardiac output syndrome after neonatal cardiopulmonary bypass. Pediatr Crit Care Med 16(7):629–636

Article  PubMed  Google Scholar 

Burkhardt BE, Rucker G, Stiller B (2015) Prophylactic milrinone for the prevention of low cardiac output syndrome and mortality in children undergoing surgery for congenital heart disease. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD009515.pub2

Article  PubMed  PubMed Central  Google Scholar 

Fisher JG, Bairdain S, Sparks EA, Khan FA, Archer JM, Kenny M et al (2015) Serious congenital heart disease and necrotizing enterocolitis in very low birth weight neonates. J Am Coll Surg 220(6):1018

Article  PubMed  Google Scholar 

Kim CS, Claud EC (2019) Necrotizing enterocolitis pathophysiology: how microbiome data alter our understanding. Clin Perinatol 46(1):29–38

Article  PubMed  Google Scholar 

Tarr PI, Warner BB (2016) Gut bacteria and late-onset neonatal bloodstream infections in preterm infants. Semin Fetal Neonatal Med 21(6):388–393

Article  PubMed  Google Scholar 

Warner BB, Deych E, Zhou Y, Hall-Moore C, Weinstock GM, Sodergren E et al (2016) Gut bacteria dysbiosis and necrotising enterocolitis in very low birthweight infants: a prospective case-control study. The Lancet 387(10031):1928–1936

Article  Google Scholar 

Yu Z, Morrison M (2004) Improved extraction of PCR-quality community DNA from digesta and fecal samples. Biotechniques 36(5):808–812

Article  CAS  PubMed  Google Scholar 

Koc F, Sugrue I, Murphy K, Renzetti S, Noort M, Ross RP et al (2022) The microbiome modulating potential of superheated steam (SHS) treatment of dietary fibres. Innov Food Sci Emerg Technol. https://doi.org/10.1016/j.ifset.2022.103082

Article  Google Scholar 

Callahan BJ, McMu

留言 (0)

沒有登入
gif