Neonicotinoid Residues on Filter Paper Lack Insecticidal Activity

Acda MN (2007) Toxicity of thiamethoxam against Philippine subterranean termites. J Insect Sci 7:1–6. https://doi.org/10.1673/031.007.2601

Article  PubMed  Google Scholar 

Barbosa PRR, Michaud JP, Rodrigues ARS, Torres JB (2016) Dual resistance to lambda-cyhalothrin and dicrotophos in Hippodamia convergens (Coleoptera: Coccinellidae). Chemosphere 159:1–9. https://doi.org/10.1016/j.chemosphere.2016.05.075

Article  CAS  PubMed  Google Scholar 

Barros EM, Silva-Torres CSA, Torres JB, Rolim GG (2018) Short-term toxicity of insecticides residues to key predators and parasitoids for pest management in cotton. Phytoparasitica 46:391–404. https://doi.org/10.1007/s12600-018-0672-8

Article  CAS  Google Scholar 

Bates D, Mächler M., Bolker B, Walker S (2014) Fitting linear mixed-effects models using lme4. arXiv preprint arXiv:1406.5823.

Boina DJ, Bloomquist JR (2015) Chemical control of the Asian citrus psyllid and of Huanglongbing disease in citrus. Pest Manag Sci 71:808–823. https://doi.org/10.1002/ps.3957

Article  CAS  PubMed  Google Scholar 

Chen Q, Sun S, Yang X, Yan H, Wang K, Ba X, Wang H (2023) Sublethal effects of neonicotinoid insecticides on the development, body weight and economic characteristics of silkworm. Toxics 24: 11(5): 402. https://doi.org/10.3390/toxics11050402

Cheng Z, Wang D, Han S, Zuo C, He Y (2022) Transcriptome analysis in the thiamethoxam resistance of seven-spot ladybird beetle, Coccinella septempunctata (Coleoptera: Coccinellidae). Ecotoxicol Environ Saf 230:113144. https://doi.org/10.1016/j.ecoenv.2021.113144

Article  CAS  PubMed  Google Scholar 

Cloyd RA, Dickinson A (2006) Effect of insecticides on mealybug destroyer (Coleoptera: Coccinellidae) and parasitoid Leptomastix dactylopii (Hymenoptera: Encyrtidae), natural enemies of citrus mealybug (Homoptera: Pseudococcidae). J Econ Entomol 99:1596–1604. https://doi.org/10.1093/jee/99.5.1596

Article  CAS  PubMed  Google Scholar 

Dagg K, Irish S, Wiegand RE, Shililu J, Yewhalaw D, Messenge LA (2019) Evaluation of toxicity of clothianidin (neonicotinoid) and chlorfenapyr (pyrrole) insecticides and cross-resistance to other public health insecticides in Anopheles arabiensis from Ethiopia. Malaria J 18:49. https://doi.org/10.1186/s12936-019-2685-2

Article  Google Scholar 

Elabasy A, Shoaib A, Waqas M, Shi Z, Jiang M (2020) Cellulose nanocrystals loaded with thiamethoxam: fabrication, characterization, and evaluation of insecticidal activity against Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae). Nanomaterials 20:788. https://doi.org/10.3390/nano10040788

Article  CAS  Google Scholar 

Fernandes MES, Alves FM, Pereira RC, Aquino LA, Fernandes FL, Zanuncio JC (2016) Lethal and sublethal effects of seven insecticides on three beneficial insects in laboratory assays and field trials. Chemosphere 156:45–55. https://doi.org/10.1016/j.chemosphere.2016.04.115

Article  CAS  PubMed  Google Scholar 

Fox J, Weisberg S (2018) An R companion to applied regression, 3rd edn. Sage Publications, Los Angeles, p 577

Frank SD, Tooker JF (2020) Neonicotinoids pose undocumented threats to food webs. Proc Natl Acad Sci USA 117:22609–22613. https://doi.org/10.1073/pnas.2017221117

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goulson D (2013) An overview of the environmental risks posed by neonicotinoid insecticides. J Appl Ecol 50:977–987. https://doi.org/10.1111/1365-2664.12111

Article  Google Scholar 

Haverty MI, Dell TR (1984) Time trends in mortality of Conophthorus ponderosae (Hopkins) exposed to insecticide residues. Pest Sci 15:369–374. https://doi.org/10.1002/ps.2780150407

Article  CAS  Google Scholar 

Haverty MI, Wood JR (1981) Residual toxicity of eleven insecticide formulations to the mountain pine beetle, Conophthorus monticolae Hopkins. J Ga Entomol Soc 16:77–83

CAS  Google Scholar 

Hussain SI, Zahid AI, Sarim M (2015) Toxicity of deltamethrin and Biosal® against Eysarcoris modestus (Distant) by filter paper impregnation method. FUUAST J Biol 5:209–211

Google Scholar 

Mace K, Rudder J, Goodhue R, Tolhurst T, Tregeagle D, Wei H, Grafton-Cardwell B, Grettenberger I, Wilson H, Van Steenwyk R, Zalom F, Steggall J (2022) Balancing bees and pest management: projected costs of proposed bee-protective neonicotinoid regulation in California. J Econ Entomol 115:10–25. https://doi.org/10.1093/jee/toab231

Article  CAS  PubMed  Google Scholar 

Magalhães LC, French BW, Hunt TE, Siegfried B (2007) Baseline susceptibility of western corn rootworm (Coleoptera: Chrysomelidae) to clothianidin. J Appl Entomol 131:251–255. https://doi.org/10.1111/j.1439-0418.2007.01153.x

Article  CAS  Google Scholar 

Pisa LW, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Downs CA, Goulson D, Kreutzweiser DP, Krupke C, Liess M, McField M, Morrissey CA, Noome DA, Settele J, Simon-Delso N, Stark JD, Van der Sluijs JP, Van Dyck H, Wiemers M (2015) Effects of neonicotinoids and fipronil on non-target invertebrates. Environ Sci Pollut Res Int 22:68–102. https://doi.org/10.1007/s11356-014-3471-x

Article  CAS  PubMed  Google Scholar 

Potin DM, Machado AVA, Barbosa PRR, Torres JB (2022) Multiple factors mediate insecticide toxicity to a key predator for cotton insect pest management. Ecotoxicology 31:490–502. https://doi.org/10.1007/s10646-022-02526-6

Article  CAS  PubMed  Google Scholar 

R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. Accessed 22 Feb 2024

Rasib KZ, Wright DJ (2018) Comparative efficacy of three bait toxicants against the subterranean termite Reticulitermes santonensis (Isoptera/Blattoidea: Rhinotermitidae). Biomed J Sci Tech Res 11(3). https://doi.org/10.26717/BJSTR.2018.11.002107

Rehman H, Khan HA, Ali A, Batool W, Razzaq K (2019) Insecticidal influence of thiamethoxam and imidacloprid against Trogoderma granarium (Coleoptera: Dermestidae). J Innov Sci 5:83–88. https://doi.org/10.17582/journal.jis/2019/5.2.83.88

Article  CAS  Google Scholar 

Řezáč M, Řezáčová V, Heneberg P (2019) Contact application of neonicotinoids suppresses the predation rate in different densities of prey and induces paralysis of common farmland spiders. Sci Rep 5: 9(1): 5724. https://doi.org/10.1038/s41598-019-42258-y

Ribeiro AV, Holle SG, Hutchison WD, Koch RL (2021) Lethal and sublethal effects of conventional and organic insecticides on the parasitoid Trissolcus japonicus, a biological control agent for Halyomorpha halys. Front Insect Sci 1:685755. https://doi.org/10.3389/finsc.2021.685755

Article  PubMed  PubMed Central  Google Scholar 

Rodrigues ARS, Spindola AF, Torres JB, Siqueira HAA, Colares F (2013) Response of different populations of seven lady beetle species to lambda-cyhalothrin with record of resistance. Ecotoxicol Environ Saf 96:53–60. https://doi.org/10.1016/j.ecoenv.2013.06.014

Article  CAS  PubMed  Google Scholar 

Santolamazza-Carbone S, Fernández de Ana-Magán FJ (2004) Testing of selected insecticides to assess the viability of the integrated pest management of the Eucalyptus snout-beetle Gonipterus scutellatus in north-west Spain. J Appl Entomol 128:620–627. https://doi.org/10.1111/j.1439-0418.2004.00893.x

Article  CAS  Google Scholar 

Snodgrass GL, Adamczyk JJ Jr, Gore J (2005) Toxicity of insecticides in a glass-vial bioassay to adult brown, green, and southern green stink bugs (Heteroptera: Pentatomidae). J Econ Entomol 98:177–181. https://doi.org/10.1093/jee/98.1.177

Article  CAS  PubMed  Google Scholar 

Stará J, Nesvorná M, Hubert J (2011) Long-term pre-exposure of the pest mite Tyrophagus putrescentiae to sub-lethal residues of bifenthrin on rapeseed did not affect its susceptibility to bifenthrin. Crop Prot 30:1227–1232. https://doi.org/10.1016/j.cropro.2011.05.013

Article  CAS  Google Scholar 

Tang LD, Qiu BL, Cuthbertson AG, Ren SX (2015) Status of insecticide resistance and selection for imidacloprid resistance in the ladybird beetle Propylaea japonica (Thunberg). Pestic Biochem Physiol 123:87–92. https://doi.org/10.1016/j.pestbp.2015.03.008

Article  CAS  PubMed  Google Scholar 

Torres JB, Ruberson JR (2004) Toxicity of thiamethoxam and imidacloprid to Podisus nigrispinus (Dallas) (Heteroptera: Pentatomidae) nymphs associated to aphid and whitefly control in cotton. Neotrop Entomol 33:99–106. https://doi.org/10.1590/S1519-566X2004000100017

Article  CAS  Google Scholar 

Torres JB, Rolim GG, Arruda LS, Santos MP, Leite AS, Neves RCS (2022) Insecticides in use and risk of control failure of boll weevil (Coleoptera: Curculionidae) in the Brazilian Cerrado. Neotrop Entomol 51:613–627. https://doi.org/10.1007/s13744-022-00971-w

Article  CAS  PubMed  Google Scholar 

Wood T, Goulson D (2017) The environmental risks of neonicotinoid pesticides: a review of the evidence post-2013. Greenpeace France, Paris, p 87p

Google Scholar 

Yuan M, Liu X, Li C, Yu J, Zhang B, Ma Y (2019) A higher efficiency removal of neonicotinoid insecticides by modified cellulose-based complex particle. Int J Biol Macrom 126:857–866. https://doi.org/10.1016/j.ijbiomac.2018.12.157

Article 

留言 (0)

沒有登入
gif