A review of the physiological effects of microgravity and innovative formulation for space travelers

Hoffman SJ (1997) Human exploration of Mars: the reference mission of the NASA Mars exploration study team. National Aeronautics and Space Administration, Lyndon B. Johnson Space Center

Blue RS, Bayuse TM, Daniels VR, Wotring VE, Suresh R, Mulcahy RA, Antonsen EL (2019) Supplying a pharmacy for NASA exploration spaceflight: challenges and current understanding. npj Microgravity 5(1):14. https://doi.org/10.1038/s41526-019-0075-2

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wotring V (2019) Spaceflight pharmacology. Principles of clinical medicine for space flight, pp 815–840. https://doi.org/10.1007/978-1-4939-9889-0_27

Nikolaev DV, Shchelykalina SP, Korostylev KA, Semenova VV, Kolesnikov VA, Vassilieva GY (2022) Measurement and computational procedures of bioimpedance analysis to assess human postural instability in clinical and space medicine research. In: 2022 24th International conference on digital signal processing and its applications (DSPA). IEEE, pp 1–6. https://doi.org/10.1109/DSPA53304.2022.9790757.

Krittanawong C, Singh NK, Scheuring RA, Urquieta E, Bershad EM, Macaulay TR, Crucian BE (2022) Human health during space travel: state-of-the-art review. Cells 12(1):40. https://doi.org/10.3390/cells12010040

Article  PubMed  PubMed Central  CAS  Google Scholar 

Sibonga J, Matsumoto T, Jones J, Shapiro J, Lang T, Shackelford L et al (2019) Resistive exercise in astronauts on prolonged spaceflights provides partial protection against spaceflight-induced bone loss. Bone 128:112037. https://doi.org/10.1016/j.bone.2019.07.013

Article  PubMed  CAS  Google Scholar 

Leblanc A, Matsumoto T, Jones J, Shapiro J, Lang T, Shackelford L, Ohshima H (2013) Bisphosphonates as a supplement to exercise to protect bone during long-duration spaceflight. Osteoporos Int 24:2105–2114. https://doi.org/10.1007/s00198-012-2243-z

Article  PubMed  CAS  Google Scholar 

Seoane-Viano I, Ong JJ, Basit AW, Goyanes A (2022) To infinity and beyond: strategies for fabricating medicines in outer space. Int J Pharm X 4:100121. https://doi.org/10.1016/j.ijpx.2022.100121

Article  PubMed  PubMed Central  CAS  Google Scholar 

Stewart LH, Trunkey D, Rebagliati GS (2007) Emergency medicine in space. J Emerg Med 32(1):45–54. https://doi.org/10.1016/j.jemermed.2006.05.031

Article  PubMed  Google Scholar 

Scully RR, Basner M, Nasrini J, Lam CW, Hermosillo E, Gur RC, Ryder VE (2019) Effects of acute exposures to carbon dioxide on decision making and cognition in astronaut-like subjects. npj Microgravity 5(1):17. https://doi.org/10.1038/s41526-019-0071-6

Article  PubMed  PubMed Central  CAS  Google Scholar 

National Academies of Sciences, Engineering, and Medicine. Space radiation and astronaut health: managing and communicating cancer risks

Singleterry RC Jr, Blattnig SR, Clowdsley MS, Qualls GD, Sandridge CA, Simonsen LC et al (2011) OLTARIS: On-line tool for the assessment of radiation in space. Acta Astronaut 68(7–8):1086–1097. https://doi.org/10.1016/j.actaastro.2010.09.022

Article  Google Scholar 

Sihver L, Mortazavi SMJ (2019) Radiation risks and countermeasures for humans on deep space missions. In: 2019 IEEE aerospace conference. IEEE, pp 1–10. https://doi.org/10.1109/AERO.2019.8742175

Mehta P, Bhayani D (2017) Impact of space environment on stability of medicines: challenges and prospects. J Pharm Biomed Anal 136:111–119. https://doi.org/10.1016/j.jpba.2016.12.040

Article  PubMed  CAS  Google Scholar 

Wotring VE (2016) Chemical potency and degradation products of medications stored over 550 earth days at the international space station. AAPS J 18:210–216. https://doi.org/10.1208/s12248-015-9834-5

Article  PubMed  Google Scholar 

Bhayani D, Naik H, Nathaniel TN, Khan S, Mehta P (2019) Simulated space radiation: Investigating ionizing radiation effects on the stability of amlodipine besylate API and tablets. Eur J Pharm Sci 137:104982. https://doi.org/10.1016/j.ejps.2019.104982

Article  PubMed  CAS  Google Scholar 

Bhayani D, Mehta P, Patel M, Naik H, Nathaniel TN, Khan S (2022) Ground-based selected ionizing space radiation effects on stability of APIs and their formulations. J Pharm Biomed Anal 220:115019. https://doi.org/10.1016/j.jpba.2022.115019

Article  PubMed  CAS  Google Scholar 

Fontaine J (2008) Towards the use of diamond-like carbon solid lubricant coatings in vacuum and space environments. Proc Inst Mech Eng Part J J Eng Tribol 222(8):1015–1029. https://doi.org/10.1243/13506501JET323

Article  CAS  Google Scholar 

Thirsk R, Kuipers A, Mukai C, Williams D (2009) The space-flight environment: the International Space Station and beyond. CMAJ 180(12):1216–1220. https://doi.org/10.1503/cmaj.081125

Article  PubMed  PubMed Central  Google Scholar 

Oakey A, Waters T, Zhu W, Royall PG, Cherrett T, Courtney P, Jelev N (2021) Quantifying the effects of vibration on medicines in transit caused by fixed-wing and multi-copter drones. Drones 5(1):22. https://doi.org/10.3390/drones5010022

Article  Google Scholar 

Malhotra A (2022) Pharmaceutical liquid dosage forms in space: looking toward the future by learning from the past. In: Handbook of space pharmaceuticals. Springer, Cham, pp 97–112. https://doi.org/10.1007/978-3-030-05526-4_16

McQuillen JB et al (2011) Final report for intravenous fluid generation (IVGEN) spaceflight experiment

DeVon G et al (2011) “IVGEN,” presented at the Technology Showcase, Cleveland, OH. Available: https://ntrs.nasa.gov/citations/20150010343. Accessed 24 July 2023

Ray KM et al (2023) Intravenous Fluid Generation Mini (IVGEN Mini) Summary and Related Research. E-20087. https://ntrs.nasa.gov/citations/20220012816. Accessed 24 July 2023

Friedberg W, Copeland K (2011) Ionizing radiation in earth’s atmosphere and in space near earth (No. DOT/FAA/AM-11/9). United States. Office of Aerospace Medicine

Yasuda H, Sihver L (2022) Broadening the selection criteria for Astronauts undertaking long–term space travel. Front Nucl Med 2:997718. https://doi.org/10.3389/fnume.2022.997718

Article  Google Scholar 

Corliss WR (1968) Space Radiation. Atomic Energy Commission, Division of Technical Information

Wang Q, Xie C, Xi S, Qian F, Peng X, Huang J, Tang F (2020) Radioprotective effect of flavonoids on ionizing radiation-induced brain damage. Molecules 25(23):5719. https://doi.org/10.3390/molecules25235719

Article  PubMed  PubMed Central  CAS  Google Scholar 

Rignall A (2017) ICHQ1A (R2) stability testing of new drug substance and product and ICHQ1C stability testing of new dosage forms. ICH quality guidelines: an implementation guide, pp 3–44. https://doi.org/10.1002/9781118971147.ch1

Mehrotra DV, Hemmings RJ, Russek-Cohen E, ICH E9/R1 Expert Working Group (2016) Seeking harmony: estimands and sensitivity analyses for confirmatory clinical trials. Clin Trials 13(4):456–458. https://doi.org/10.1177/1740774516633115

Article  Google Scholar 

Khan SR, Mohammad A, Khan MA, Faustino PJ (2016) Critical importance and quality evaluation of drug delivery autoinjectors in the FDA-DOD shelf life extension program (SLEP). AAPS J 18:801–803. https://doi.org/10.1208/s12248-016-9910-5

Article  PubMed  Google Scholar 

Reichard JF, Phelps SE, Lehnhardt KR, Young M, Easter BD (2023) The effect of long-term spaceflight on drug potency and the risk of medication failure. npj Microgravity 9(1):35. https://doi.org/10.1038/s41526-023-00271-6

Article  PubMed  PubMed Central  CAS  Google Scholar 

Thamthaweechok N, Thamlikitkul V, Tiengrim S (2018) Heat stability of antibiotics commonly used in food animals and agriculture in Thailand. J Med Assoc Thail 101(7)

Pranil T, Moongngarm A, Loypimai P (2020) Influence of pH, temperature, and light on the stability of melatonin in aqueous solutions and fruit juices. Heliyon. https://doi.org/10.1016/j.heliyon.2020.e03648

Article  PubMed  PubMed Central  Google Scholar 

Afonin BV, Sedova EA (2012) Digestive system functioning during simulation of microravity effects on humans by means of immersion. Hum Physiol 38:776–780. https://doi.org/10.1134/S036211971207002X

Article  CAS  Google Scholar 

Afonin BV (2013) Analysis of possible causes activation a stomach and pancreas excretory and incretory function after completion of space flight on the international space station. Fiziol Cheloveka 39(5):62–70

PubMed  CAS  Google Scholar 

Chen Y, Yang CM, Han QL (2012) The effects of simulated weightlessness on plasma ghrelin, plasma VIP and gastrointestinal motility. Chin J Gastroenterol Hepatol 1(1):55–58

Google Scholar 

Amidon GL, DeBrincat GA, Najib N (1991) Effects of gravity on gastric emptying, intestinal transit, and drug absorption. J Clin Pharmacol 31(10):968–973. https://doi.org/10.1002/j.1552-4604.1991.tb03658.x

Article  PubMed  CAS  Google Scholar 

Braddock M (2017) Ergonomic challenges for astronauts during space travel and the need for space medicine. J Ergon 7(221):2. https://doi.org/10.4172/2165-7556.1000221

Article  Google Scholar 

Jamil F, Kumar S, Sharma S, Vishvakarma P, Singh L (2011) Review on stomach specific drug delivery systems: development and evaluation. Int J Res Pharm Biomed Sci 2(4):14271433

Google Scholar 

Kast J, Yu Y, Seubert CN, Wotring VE, Derendorf H (2017) Drugs in space: pharmacokinetics and pharmacodynamics in astronauts. Eur J Pharm Sci 109:S2–S8.

留言 (0)

沒有登入
gif