Horng CT, Wu HC, Chiang NN, Lee CF, Huang YS, Wang HY, Yang JS, Chen FA. Inhibitory effect of burdock leaves on elastase and tyrosinase activity. Exp Ther Med. 2017;14(4):3375–80. https://doi.org/10.3892/ETM.2017.4880.
Clerici MT. Retention of bioactive compounds and bifidogenic activity of burdock roots subjected to different processes. Int J Gastron Food Sci. 2022;27: 100448. https://doi.org/10.1016/j.ijgfs.2021.100448.
Ishii T, Shimizu T, Imai M, Tamura M, Healy J, Fernandez J, Stock JB, Perez E, Fitzgerald CP. Arctigenin (ATG)-enriched burdock seed oil (ABSO): a new ATG-enriched botanical extract with skin-brightening properties. J Invest Dermatol. 2023;143(5):1226–34. https://doi.org/10.1016/j.jid.2023.03.1240.
Ahangarpour A, Heidari H, Oroojan AA, Mirzavandi F, Esfehani KN, Mohammadi ZD. Antidiabetic, hypolipidemic and hepatoprotective effects of Arctium lappa root’s hydro-alcoholic extract on nicotinamide-streptozotocin induced type 2 model of diabetes in male mice. Adv Pharm Bull. 2017;7(2):245–51. https://doi.org/10.22038/AJP.2016.7843.
Lee D, Kim CY. Inhibition of advanced glycation end product formation by burdock root extract. J Nutr Health. 2016;49(4):233–40. https://doi.org/10.4163/JNH.2016.49.4.233.
Ghedira K, Goetz P. Arctium lappa L. (Asteraceae): Bardane. Phytothérapie. 2013;11(6):376–80. https://doi.org/10.1007/s10298-013-0827-1.
Cao J, Zhang P, Xu C, Huang T, Bai Y, Chen KS. Effect of aqueous extract of Arctium lappa L. (burdock) roots on the sexual behavior of male rats. BMC Complement Altern Med. 2012;12(1):8. https://doi.org/10.1186/1472-6882-12-8.
Yosri N, Alsharif SM, Xiao J, Musharraf SG, Zhao C, Saeed A, Gao R, Said NS, Di Minno A, Daglia M, Guo Z, Khalifa SAM, El-Seedi HR. Arctium lappa (Burdock): Insights from ethnopharmacology potential, chemical constituents, clinical studies, pharmacological utility and nanomedicine. Biol Pharm Bull. 2022;158: 114104. https://doi.org/10.1016/j.biopha.2022.114104.
Santini A, Tenore GC, Novellino E. Nutraceuticals: a paradigm of proactive medicine. Eur J Pharm Sci. 2017;96:53–61. https://doi.org/10.1016/J.EJPS.2016.09.003.
Article PubMed CAS Google Scholar
Ferracane R, Graziani G, Gallo M, Fogliano V, Ritieni A. Metabolic profile of the bioactive compounds of burdock (Arctium lappa) seeds, roots and leaves. J Pharm Biomed Anal. 2010;51(2):380–6. https://doi.org/10.1016/J.JPBA.2009.03.018.
Kim YS, Kim SH. Physicochemical and antioxidant characteristics of hot water extracts on pre-treatment conditions of burdock (Arctium lappa L.). Food Sci Technol. 2018;47(6):612–9. https://doi.org/10.3746/JKFN.2018.47.6.612.
Azizov UM, Khadzhieva UA, Rakhimov DA, Mezhlumyan LG, Salikhov SA. Chemical composition of dry extract of Arctium lappa roots. Pharm Chem J. 2012;47(6):324–8. https://doi.org/10.1007/S10600-012-0142-3.
Pandey J, Dev K, Chattopadhyay S, Kadan S, Sharma T, Maurya R, Sanyal S, Siddiqi MI, Zaid H, Tamrakar AK. β-Sitosterol-d-Glucopyranoside mimics estrogenic properties and stimulates glucose utilization in skeletal muscle cells. Molecules. 2021;26(11):3129. https://doi.org/10.3390/molecules26113129.
Article PubMed PubMed Central CAS Google Scholar
Huang S, Dong S, Lin L, Ma QX, Xu M, Ni L, Fan Q. Inulin ameliorates metabolic syndrome in high-fat diet-fed mice by regulating gut microbiota and bile acid excretion. Front Pharmacol. 2023;14:1226448. https://doi.org/10.3389/fphar.2023.1226448.
Article PubMed PubMed Central CAS Google Scholar
Yuan P, Shao T, Han J, Liu C, Wang G, He SG, Xu SX, Nian SH, Chen K. Burdock fructooligosaccharide as an α-glucosidase inhibitor and its antidiabetic effect on high-fat diet and streptozotocin-induced diabetic mice. J Funct Foods. 2021;86: 104703. https://doi.org/10.1016/J.JFF.2021.104703.
Nisar MF, Nisar MF, Khadim M, Rafiq M, Chen J, Yang Y, Wan CC. Pharmacological properties and health benefits of eugenol: a comprehensive review. Evid Based Complement Alternat Med. 2021;2021:2497354. https://doi.org/10.1155/2021/2497354.
Das A, Harshadha K, Kannan D, Hari Raja K, Jayaprakash B. Evaluation of therapeutic potential of eugenol—a natural derivative of Syzygium aromaticum on cervical cancer. Asian Pac J Cancer Prev. 2018;19(7):1977–83. https://doi.org/10.22034/APJCP.2018.19.7.1977.
Article PubMed PubMed Central CAS Google Scholar
Arya SS, Arya SS, Rookes JE, Cahill DM, Lenka SK. Vanillin: a review on the therapeutic prospects of a popular flavouring molecule. Crit Rev Food Sci Nutr. 2021;21(3):304–19. https://doi.org/10.1007/S13596-020-00531-W.
Taqvi S, Bhat EA, Sajjad N, Sabir JSM, Qureshi A, Rather IA, Rehman S. Protective effect of vanillic acid in hydrogen peroxide-induced oxidative stress in D.Mel-2 cell line. Saudi J Biol Sci. 2021;28(3):1952–9. https://doi.org/10.1016/J.SJBS.2020.12.023.
Kim J, Wie MB, Ahn M, Tanaka A, Matsuda H, Shin T. Benefits of hesperidin in central nervous system disorders: a review. Arch Craniofacial Surg. 2019;52(4):230–9. https://doi.org/10.5115/ACB.19.119.
Carević T, Kostić M, Nikolić B, Stojković D, Soković M, Ivanov M. Hesperetin—between the ability to diminish mono- and polymicrobial biofilms and toxicity. Molecules. 2022;27(20):6806. https://doi.org/10.3390/molecules27206806.
Article PubMed PubMed Central CAS Google Scholar
Wang D, Hou J, Wan J, Yang Y, Liu S, Li X, Li W, Dai X, Zhou P, Liu W, Wang P. Dietary chlorogenic acid ameliorates oxidative stress and improves endothelial function in diabetic mice via Nrf2 activation. Food Sci Technol. 2021;49(1): e985363. https://doi.org/10.1177/0300060520985363.
Pavlikova N. Caffeic acid and diseases—mechanisms of action. Int J Mol Sci. 2022;24(1):588. https://doi.org/10.3390/ijms24010588.
Article PubMed PubMed Central CAS Google Scholar
Khorasanian AS, Fateh ST, Gholami F, Rasaei N, Gerami H, Khayyatzadeh SS, Shiraseb F, Asbaghi O. The effects of hesperidin supplementation on cardiovascular risk factors in adults: a systematic review and dose–response meta-analysis. Food Sci Technol. 2023;49: e1177708. https://doi.org/10.3389/fnut.2023.1177708.
Al-Ashaal HA, El-Sheltawy ST. Antioxidant capacity of hesperidin from Citrus peel using electron spin resonance and cytotoxic activity against human carcinoma cell lines. Food Sci Technol. 2011;49(3): 509734. https://doi.org/10.3109/13880209.2010.509734.
Topal M, Göçer H, Topal F, Kalın P, Polat Kose L, Gülçin İ, Cetin Cakmak K, Küçük M, Durmaz L, Gören AC, Alwasel S. Antioxidant, antiradical, and anticholinergic properties of cynarin purified from the Illyrian thistle (Onopordum illyricum L.). Food Sci Technol. 2016;31(2): e1018244. https://doi.org/10.3109/14756366.2015.1018244.
Fahmi Elsebai M, Mocan A, Atanasov AG, Atanasov AG. Cynaropicrin: a comprehensive research review and therapeutic potential as an anti-hepatitis C virus agent. Food Sci Technol. 2016;7: e472. https://doi.org/10.3389/fphar.2016.00472.
Anwar S, Shamsi A, Shahbaaz M, Queen A, Khan P, Hasan GM, Islam A, Alajmi MF, Hussain A, Ahmad F, Hassan MI. Rosmarinic acid exhibits anticancer effects via MARK4 inhibition. Food Sci Technol. 2020;10(1): e65648. https://doi.org/10.1038/s41598-020-65648-z.
Singh M, Kapoor A, Bhatnagar A. Physiological and pathological roles of aldose reductase. Food Sci Technol. 2021;11(10): e655. https://doi.org/10.3390/metabo11100655.
Park SY, Hong SS, Han XH, Hwang JS, Lee D, Ro JS, Hwang BY. Lignans from Arctium lappa and their inhibition of LPS-induced nitric oxide production. Food Sci Technol. 2007;55(1): e150. https://doi.org/10.1248/cpb.55.150.
Chen GR, Li HF, Dou D, Xu Y, Jiang HS, Li FR, Kang TG. Arctigenin as a lead compound for anticancer agent. Food Sci Technol. 2013;27(23): e821120. https://doi.org/10.1080/14786419.2013.821120.
留言 (0)