A new therapeutic strategy for luminal A-breast cancer treatment: vulpinic acid as an anti-neoplastic agent induces ferroptosis and apoptosis mechanisms

Cao X, Li Y, Wang Y, et al. Curcumin suppresses tumorigenesis by ferroptosis in breast cancer. PLoS ONE. 2022;17:1–15.

CAS  Google Scholar 

Pilleron S, Soto-Perez-de-Celis E, Vignat J, et al. Estimated global cancer incidence in the oldest adults in 2018 and projections to 2050. Int J Cancer. 2021;148:601–8.

Article  CAS  PubMed  Google Scholar 

Cedro-Tanda A, Ríos-Romero M, Romero-Córdoba S, et al. A lncRNA landscape in breast cancer reveals a potential role for AC009283.1 in proliferation and apoptosis in HER2-enriched subtype. Sci Rep. 2020;10:13146.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Du X, Zhang J, Liu L, et al. A novel anticancer property of Lycium barbarum polysaccharide in triggering ferroptosis of breast cancer cells. J Zhejiang Univ B. 2022;23:286–99.

Article  CAS  Google Scholar 

Zhong L, Li Y, Xiong L, et al. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct Target Ther. 2021;6:201.

Article  PubMed  PubMed Central  Google Scholar 

Lv Y, Mou Y, Su J, et al. The inhibitory effect and mechanism of Resina Draconis on the proliferation of MCF-7 breast cancer cells: a network pharmacology-based analysis. Sci Rep. 2023;13:3816.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao N, Rosen JM. Breast cancer heterogeneity through the lens of single-cell analysis and spatial pathologies. Semin Cancer Biol. 2022;82:3–10.

Article  CAS  PubMed  Google Scholar 

Telang NT. The divergent effects of ovarian steroid hormones in the MCF-7 model for luminal A breast cancer: mechanistic leads for therapy. Int J Mol Sci. 2022;23:4800.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu F-F, Shi W, Done SJ, et al. Identification of a low-risk luminal A breast cancer cohort that may not benefit from breast radiotherapy. J Clin Oncol. 2015;33:2035–40.

Article  PubMed  Google Scholar 

Nielsen TO, Jensen M-B, Burugu S, et al. High-risk premenopausal luminal A breast cancer patients derive no benefit from adjuvant cyclophosphamide-based chemotherapy: results from the DBCG77B clinical trial. Clin Cancer Res. 2017;23:946–53.

Article  CAS  PubMed  Google Scholar 

To NB, Truong VN-P, Ediriweera MK, Cho SK. Effects of combined pentadecanoic acid and tamoxifen treatment on tamoxifen resistance in MCF−7/SC breast cancer cells. Int J Mol Sci. 2022;23:11340.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang W, Gong M, Zhang W, et al. Thiostrepton induces ferroptosis in pancreatic cancer cells through STAT3/GPX4 signalling. Cell Death Dis. 2022;13:630.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS, Stockwell BR. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci. 2016;113:E4966–75.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021;22:266–82.

Article  PubMed  PubMed Central  Google Scholar 

Ensoy M, Bumin ZS, Jama HA, Cansaran-Duman D. The regulation role of ferroptosis mechanism of anti-cancer drugs and noncoding RNAs. Curr Med Chem. 2023;30:1638–56.

Article  CAS  PubMed  Google Scholar 

Li Z, Chen L, Chen C, et al. Targeting ferroptosis in breast cancer. Biomark Res. 2020;8:58.

Article  PubMed  PubMed Central  Google Scholar 

Pan X, Lin Z, Jiang D, et al. Erastin decreases radioresistance of NSCLC cells partially by inducing GPX4-mediated ferroptosis. Oncol Lett. 2019. https://doi.org/10.3892/ol.2019.9888.

Article  PubMed  PubMed Central  Google Scholar 

Zhang H, Deng T, Liu R, et al. CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol Cancer. 2020;19:43.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alvarez SW, Sviderskiy VO, Terzi EM, et al. NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature. 2017;551:639–43.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dixon SJ, Patel DN, Welsch M, et al. Pharmacological inhibition of cystine–glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife. 2014. https://doi.org/10.7554/eLife.02523.

Article  PubMed  PubMed Central  Google Scholar 

Tong X, Tang R, Xiao M, et al. Targeting cell death pathways for cancer therapy: recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. J Hematol Oncol. 2022;15:174.

Article  PubMed  PubMed Central  Google Scholar 

Yilmazer A, Eroglu Z, Gurcan C, et al. Synergized photothermal therapy and magnetic field induced hyperthermia via bismuthene for lung cancer combinatorial treatment. Mater Today Bio. 2023;23: 100825.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kratz F, Abu Ajaj K, Warnecke A. Anticancer carrier-linked prodrugs in clinical trials. Expert Opin Investig Drugs. 2007;16:1037–58.

Article  CAS  PubMed  Google Scholar 

Trivedi S, Patel K, Belgamwar V, Wadher K. Functional polysaccharide lentinan: role in anti-cancer therapies and management of carcinomas. Pharmacol Res Mod Chinese Med. 2022;2: 100045.

Article  Google Scholar 

Wang L, Li K, Lin X, et al. Metformin induces human esophageal carcinoma cell pyroptosis by targeting the miR-497/PELP1 axis. Cancer Lett. 2019;450:22–31.

Article  CAS  PubMed  Google Scholar 

Ma S, Henson ES, Chen Y, Gibson SB. Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death Dis. 2016;7:e2307–e2307.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang R, Pan T, Xiang Y, et al. Curcumenol triggered ferroptosis in lung cancer cells via lncRNA H19/miR-19b-3p/FTH1 axis. Bioact Mater. 2022;13:23–36.

PubMed  Google Scholar 

Alkan AH, Ensoy M, Cansaran-Duman D. Strategic and ınnovative roles of lncRNAs regulated by naturally-derived small molecules in cancer therapy. Curr Med Chem. 2023. https://doi.org/10.2174/0109298673264372230919102758.

Article  Google Scholar 

Cansaran-Duman D, Yangın S, Çolak B. The role of vulpinic acid as a natural compound in the regulation of breast cancer-associated miRNAs. Biol Res. 2021;54:37.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kalın ŞN, Altay A, Budak H. Inhibition of thioredoxin reductase 1 by vulpinic acid suppresses the proliferation and migration of human breast carcinoma. Life Sci. 2022;310: 121093.

Article  PubMed  Google Scholar 

Kılıç N, Aras S, Cansaran-Duman D. Determination of vulpinic acid effect on apoptosis and mRNA expression levels in breast cancer cell lines. Anticancer Agents Med Chem. 2018. https://doi.org/10.2174/1871520618666180903101803.

Article 

留言 (0)

沒有登入
gif