Analysis of Kidney Stones Using Single Pulse Laser-Induced Breakdown Spectroscopy (SP-LIBS) to Determine the Concentrations of Elements

M. Malhotra et al., The complex pathophysiology of urolithiasis (kidney stones) and the effect of combinational drugs. J. Drug Deliv Ther. 12, 194–204 (2022)

Article  Google Scholar 

M. Sivaguru et al., Human kidney stones: a natural record of universal biomineralization. Nat. Rev. Urol. 18, 404–432 (2021)

Article  Google Scholar 

Z. Wang, Y. Zhang, J. Zhang, Q. Deng, H. Liang, Recent advances on the mechanisms of kidney stone formation (Review). International Journal of Molecular Medicine vol. 48 at https://doi.org/10.3892/ijmm.2021.4982 (2021)

K. Balawender, E. Łuszczki, A. Mazur, J. Wyszyńska, The Multidisciplinary Approach in the management of patients with kidney Stone Disease—A State-of-the-art review. Nutrients. 16, 1932 (2024)

Article  Google Scholar 

V.K. Singh, B.S. Jaswal, J. Sharma, P.K. Rai, Analysis of stones formed in the human gall bladder and kidney using advanced spectroscopic techniques. Biophys. Rev. 12, 647–668 (2020)

Article  Google Scholar 

V. Castiglione et al., Raman chemical imaging, a new tool in kidney stone structure analysis: case-study and comparison to Fourier Transform Infrared spectroscopy. PLoS One. 13, e0201460 (2018)

Article  Google Scholar 

V.K. Singh, B.B.S. Jaswal, J. Sharma, P.K. Rai, Spectroscopic investigations on kidney stones using Fourier transform infrared and X-ray fluorescence spectrometry. X‐Ray Spectrom. 46, 283–291 (2017)

Article  ADS  Google Scholar 

J. Laserna, J.M. Vadillo, P. Purohit, Laser-induced breakdown spectroscopy (LIBS): fast, effective, and agile leading edge analytical technology. Appl. Spectrosc. 72, 35–50 (2018)

Article  Google Scholar 

S.A. Howles, R.V. Thakker, Genetics of kidney stone disease. Nat. Rev. Urol. 17, 407–421 (2020)

Article  Google Scholar 

D. Cremers, L. Radziemski, Handbook of Laser-Induced. (2013).

Z.H. Khan et al., Laser-Induced Breakdown Spectroscopy (LIBS) for Trace Element Detection: A Review. J. Spectrosc 2022, (2022)

N. Vordos et al., Kidney stone nano-structure—is there an opportunity for nanomedicine development? Biochim. Biophys. Acta (BBA)-General Subj. 1861, 1521–1529 (2017)

Article  Google Scholar 

S.K.H. Shah et al., Laser induced breakdown spectroscopy methods and applications: a comprehensive review. Radiat. Phys. Chem. 170, 108666 (2020)

Article  Google Scholar 

G. Cristoforetti, E. Tognoni, L.A. Gizzi, Thermodynamic equilibrium states in laser-induced plasmas: from the general case to laser-induced breakdown spectroscopy plasmas. Spectrochim Acta Part. B Spectrosc. 90, 1–22 (2013)

Article  Google Scholar 

S. Mahde, M.H. Ali, A., H. Hussein, Diagnostic Study of Copper Plasma in Air by Laser Induced Breakdown Spectroscopy (LIBS). Eng. Technol. J. 33, 1002–1008 (2015)

Article  Google Scholar 

S. Zhang et al., Laser-induced plasma temperature. Spectrochim Acta Part. B Spectrosc. 97, 13–33 (2014)

Article  Google Scholar 

N.M. Dbayh, M.J. Zoory, A.H. Ali, Employing LIBS Technology to investigate the thermal influence on plasma parameter analysis in Pb Metal Model. AL-Muthanna J. Pure Sci. 10, (2023)

J. Chen, J.H. Davidson, Electron density and energy distributions in the positive DC corona: interpretation for corona-enhanced chemical reactions. Plasma Chem. Plasma Process. 22, 199–224 (2002)

Article  Google Scholar 

El A.M. Sherbini, A.A.S. Al Aamer, Measurement of plasma parameters in laser-induced breakdown spectroscopy using Si-lines. World J. Nano Sci. Eng. 2, 206 (2012)

Article  Google Scholar 

A. Aleksandrova et al., Elemental composition of single-phase kidney stones. Part II. in Journal of Physics: Conference Series vol. 1989 12013 (IOP Publishing, 2021)

留言 (0)

沒有登入
gif