R.J. Whitefield, Noncontact optical profilometer. Appl. Opt. 14, 2480 (1975)
A. You, M. Be, and In I. High - speed scanning tunneling microscopy: Principles and applications. 168, 161–8 (2012)
T. Blalock, M. Brunelle, I. Ferralli, Myer, B 2017 Metrology of freeform optics Optics InfoBase Conference Papers 2017 4–6
K. Kitagawa. Recent trends in white-light interferometry Recent Trends in White-Light Interferometry (2015)
P. Langehanenberg, G. Bally, Von, B. Kemper, Application of partially coherent light in live cell imaging with digital holographic microscopy. J. Mod. Opt. 57, 709–717 (2010)
S. Cha, P.C. Lin, L. Zhu, P.-C. Sun, Y. Fainman, Nontranslational three-dimensional profilometry by chromatic confocal microscopy with dynamically configurable micromirror scanning. Appl. Opt. 39, 2605 (2000)
B. Bowe, White light interferometric surface profiler. Opt. Eng. 37, 1796 (1998)
K. Creath, J. Schmit, J.C. Wyant, Optical metrology of diffuse surfaces. Opt. Shop Testing: Third Ed. 1, 756–807 (2006)
A. Thetford, Optical shop testing vol 11 (1979)
J. Park, D.J. Brady, G. Zheng, L. Tian, Gao, L Review of bio-optical imaging systems with a high space-bandwidth product. Adv. Photonics 3, 1–18 (2021)
J. Joseph, K.P. Faiz, M. Lahrberg, J.C. Tinguely, B.S. Ahluwalia, Improving the space-bandwidth product of structured illumination microscopy using a transillumination configuration. J. Phys. D Appl. Phys. 53, (2020)
A. Greenbaum, W. Luo, B. Khademhosseinieh, T.W. Su, A.F. Coskun, A. Ozcan, Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy. Sci. Rep. 3, 1–8 (2013)
N. Photonics, Wide field. high. Resolution FPM. 7, 739–745 (2014)
De P. Groot, L. Deck, Surface profiling by analysis of white-light interferograms in the spatial frequency domain. J. Mod. Opt. 42, 389–401 (1995)
P. Bouchal, R. Chmelík, Z. Bouchal, Phase of white light and its compatibility to the optical path. Opt. Express. 29, 12398 (2021)
T. Anna, V. Srivastava, D.S. Mehta, C. Shakher, High-resolution full-field optical coherence microscopy using a Mirau interferometer for the quantitative imaging of biological cells. Appl. Opt. 50, 6343–6351 (2011)
P. Mann, V. Singh, S. Tayal, P. Thapa, D.S. Mehta, White light phase shifting interferometric microscopy with whole slide imaging for quantitative analysis of biological samples. J. Biophotonics 15, (2022)
D.S. Mehta, S. Saito, H. Hinosugi, M. Takeda, T. Kurokawa, Spectral interference Mirau microscope with an acousto-optic tunable filter for three-dimensional surface profilometry (2003)
T. Anna, C. Shakher, D. Singh Mehta, Simultaneous tomography and topography of silicon integrated circuits using full-field swept-source optical coherence tomography. J. Opt. A: Pure Appl. Opt. 11, (2009)
F. Group, Handbook of Optical Metrology (2017)
J. Qian, L. Assoufid, C. Liu, B. Shi, W. Liu, Surface profile measurement of KB mirrors using Fizeau laser interferometer Advances in Metrology for X-Ray and EUV Optics III 7801 78010K (2010)
E.F. Erickson, R.M. Brown, Calculation of Fringe Visibility in a laser-illuminated interferometer. J. Opt. Soc. Am. 57, 367 (1967)
Y. Shimizu, L.C. Chen, D.W. Kim, X. Chen, X. Li, H. Matsukuma, An insight into optical metrology in manufacturing. Meas. Sci. Technol. 32, (2021)
A. Ahmad, V. Dubey, N. Jayakumar, A. Habib, A. Butola, M. Nystad, G. Acharya, P. Basnet, D.S. Mehta, B.S. Ahluwalia, High-throughput spatial sensitive quantitative phase microscopy using low spatial and high temporal coherent illumination. Sci. Rep. 11, 1–13 (2021)
P. Girshovitz, N.T. Shaked, Doubling the field of view in off-axis low-coherence interferometric imaging. Light Sci. Appl. 3, (2014)
S. Tayal, K. Usmani, V. Singh, V. Dubey, D. Singh Mehta, Speckle-free quantitative phase and amplitude imaging using common-path lateral shearing interference microscope with pseudo-thermal light source illumination. Optik (Stuttg). 180, 991–996 (2019)
M. Rogalski, M. Cywińska, A. Ahmad, K. Patorski, V. Micó, B.S. Ahluwalia, Trusiak, M 2022 Hilbert phase microscopy based on pseudo thermal illumination in the Linnik configuration. Opt. Lett. 47 5793
V. Kumar, A. Kumar Dubey, M. Gupta, V. Singh, A. Butola, D. Singh Mehta, Speckle noise reduction strategies in laser-based projection imaging, fluorescence microscopy, and digital holography with uniform illumination, improved image sharpness, and resolution. Opt. Laser Technol. 141, (2021)
W. Song, D. Cheng, Z. Deng, Y. Liu, Y. Wang, Design and assessment of a wide FOV and high-resolution optical tiled head-mounted display. Appl. Opt. 54, E15 (2015)
K. Pang, F. Fang, L. Song, Y. Zhang, H. Zhang, Bionic compound eye for 3D motion detection using an optical freeform surface. J. Opt. Soc. Am. B 34, B28 (2017)
E. Ruch, R. Geyl, H. Leplan, Advanced space optics development in freeform optics design and polishing Optics InfoBase Conference Papers, 2–4 (2017)
Z. Feng, B.D. Froese, R. Liang, D. Cheng, Y. Wang, Simplified freeform optics design for complicated laser beam shaping. Appl. Opt. 56, 9308 (2017)
F.Z. Fang, X.D. Zhang, A. Weckenmann, G.X. Zhang, C. Evans, Manufacturing and measurement of freeform optics. CIRP Ann. Manuf. Technol. 62, 823–846 (2013)
I. Abdulhalim, Spatial and temporal coherence effects in interference microscopy and full-field optical coherence tomography. Ann. Phys. 524, 787–804 (2012)
S. Bhatt, A. Butola, A. Kumar, P. Thapa, A. Joshi, S. Jadhav, N. Singh, D.K. Prasad, K. Agarwal, D.S. Mehta, Single-shot multispectral quantitative phase imaging of biological samples using deep learning. Appl Opt 62, 3989 (2023)
S. Bhatt, A. Butola, S. Acuña, D. Henry Hansen, J.-C. Tinguely, D. Singh Mehta, Singh Ahluwalia B and Agarwal K Quantitative phase imaging for tracing the motion of waveguide trapped bead particle 9, (2023)
A. Ahmad, V. Srivastava, V. Dubey, D.S. Mehta, Ultra-short longitudinal spatial coherence length of laser light with the combined effect of spatial, angular, and temporal diversity. Appl. Phys. Lett. 106, (2015)
S. Bhatt, A. Butola, S. Acuña, D.H. Hansen, J.-C. Tinguely, M. Nystad, D.S. Mehta, K. Agarwal, Characterizing the Consistency of Motion of Spermatozoa through nanoscale motion tracing F S Sci (2024)
J. Rosen, M. Takeda, Longitudinal spatial coherence applied for surface profilometry. Appl. Opt. 39, 4107 (2000)
D.S. Mehta, D.N. Naik, R.K. Singh, M. Takeda, Laser speckle reduction by multimode optical fiber bundle with combined temporal, spatial, and angular diversity. Appl. Opt. 51, 1894–1904 (2012)
A. Ahmad, T. Mahanty, V. Dubey, A. Butola, B.S. Ahluwalia, D.S. Mehta, Effect on the longitudinal coherence properties of a pseudothermal light source as a function of source size and temporal coherence. Opt. Lett. 44, 1817 (2019)
S. Bhatt, A. Butola, S.R. Kanade, A. Kumar, D.S. Mehta, High-resolution single-shot phase-shifting interference microscopy using deep neural network for quantitative phase imaging of biological samples. J. Biophotonics. 14, 6–8 (2021)
Anon Guenther_,_modern_optics_interference.pdf
D.S. Mehta, S. Tayal, A. Ahmad, S. Bhatt, V.K. Dubey, A. Butola, B.S. Ahluwalia, 2023 Effect of partial spatial coherence of light on quantitative phase microscopy of biological samples: improved spatial phase sensitivity, space-bandwidth product, and high accuracy in phase measurement 63
Anon, [Leonard_Mandel,_Emil_Wolf]_Optical_Coherence_and_(z-lib.org).pdf
D.R. Burada, K.K. Pant, V. Mishra, M. Bichra, G.S. Khan, S. Sinzinger, Shakher, C 2019 development of a metrology technique suitable for in situ measurement and corrective manufacturing of freeform optics. Adv. Opt. Technol. 8 203–215
K.K. Pant, D.R. Burada, M. Bichra, M.P. Singh, A. Ghosh, G.S. Khan, S. Sinzinger, Shakher, C 2015 subaperture stitching for measurement of freeform wavefront. Appl. Opt. 54 10022
Y. Hu, Q. Chen, S. Feng, Zuo, C 2020 microscopic fringe projection profilometry: a review. Opt. Lasers Eng. 135
C.F. Cheung, L. Kong, M. Ren, 2020 Precision freeform metrology advances in Optical Form and Coordinate Metrology 7-1-7–20
D.J. Whitehouse, 2003 Handbook of Surface and Nanometrology
E.S. Gadelmawla, M.M. Koura, T.M.A. Maksoud, I.M. Elewa, H.H. Soliman, 2002 Roughness parameters J Mater Process Technol 123 133–45
留言 (0)