A comparative study of photonic band gaps for different materials of one dimensional photonic crystals

L. Rayleigh, On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure. Philos. Mag. 24, 145–159 (1887)

Article  Google Scholar 

E. Hecht, A. Zając, Optics. Addison-Wesley Pub. Co., (1974)

J. J. D. Joannopoulos, S. Johnson, J. N. J. Winn, R. R. D. Meade, “Photonic crystals: molding the flow of light”, Second ed., (Princeton University press, 2008)

A.H. Aly, M. Ismaeel, E. Abdel-Rahman, Comparative study of the one dimensional dielectric and metallic photonic crystals. Opt. Photon. J. 2(105), 112 (2012). https://doi.org/10.4236/opj.2012.22014[Online]

Article  Google Scholar 

A.H. Aly, Metallic and superconducting photonic crystal. J. Supercond. Novel Magn. 21(7), 421–425 (2008)

Article  Google Scholar 

H. Jiang, H. Chen, H. Li, Y. Zhang, J. Zi, S. Zhu, Properties of one-dimensional photonic crystals containing single-negative materials. Phys. Rev. E 69, 6 (2004)

Article  Google Scholar 

Y. Yue, J.P. Gong, Tunable one-dimensional photonic crystals from soft materials. J. Photochem. Photobiol. C Photochem. Rev. 23, 45–67 (2015)

Article  Google Scholar 

J.B. Chen, Y. Shen, W.X. Zhou, Y.X. Zheng, H.B. Zhao, L.Y. Chen, Comparison study of the band-gap structure of a 1D-photonic crystal by using TMM and FDTD analyses. J. Korean Phys. Soc. 58(4), 1014–1020 (2011)

Article  Google Scholar 

A. Luce, A. Mahdavi, F. Marquardt, H. Wankerl, TMM-Fast, a transfer matrix computation package for multilayer thin-film optimization: tutorial. J. Opt. Soc. Am. A 39, 1007–1013 (2022)

Article  ADS  Google Scholar 

W. Bogaerts, Nanophotonic waveguides and photonic crystals in silicon-on-insulator. INTEC 291, 424–434 (2004)

Google Scholar 

S. Guo, “Plane wave expansion method for photonic band gap calculation using MATLAB”, First ed. Old Dominion University press, (2001)

W.C. Sailor, F.M. Mueller, P.R. Villeneuve, Augmented-plane-wave method for photonic band-gap materials. Phys. Rev. B 57(15), 8819–8822 (1998)

Article  ADS  Google Scholar 

K. Sakoda, low-threshold laser oscillation due to group-velocity anomaly peculiar to two- and three dimensional photonic crystals. Phys. Rev. B 55, 155 (1997)

Google Scholar 

S. Shi, C. Chen, D.W. Prather, Plane-wave expansion method for calculating band structure of photonic crystal slabs with perfectly matched layers. J. Opt. Soc. Am. A 21(9), 1769 (2004)

Article  ADS  Google Scholar 

R. Antos, M. Veis, Fourier factorization in the plane wave expansion method in modeling photonic crystals. Photon. Cryst. Intro. Appl. Theory 1, 319–344 (2012)

Google Scholar 

Hu. Chung-An, Wu. Chien-Jang, T.-J. Yang, S.-L. Yang, Analysis of optical properties in cylindrical dielectric photonic crystal. Opt. Commun. 291(15), 424–434 (2013)

ADS  Google Scholar 

J.B. Pendry, A. MacKinnon, Calculation of photon dispersion relations. Phys. Rev. Lett. 69(19), 2772–2775 (1992). https://doi.org/10.1103/physrevlett.69.2772

Article  ADS  Google Scholar 

T. Makino, Transfer matrix method with applications to distributed feedback optical devices. Progr. Electromagn. Res. 10, 271–319 (1995). https://doi.org/10.2528/PIER94032106

Article  Google Scholar 

Wikipedia, “Refractive index.” [Online]. Available: https://en.wikipedia.org/wiki/Refractive_index

RSoft, “RSoft BeamPROP manual.” Version 8.3, RSoft Design Group, Inc.,NY 10562 USA, (2023). [Online]. Available: https://ipsiras.ru/Lab/CKPO/Nanofot/doc/beamprop.pdf

M. Polyanskiy, “Refractive index database.” [Online]. Available: https://refractiveindex.info/

D.E. Aspnes, A.A. Studna, Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys. Rev. B 27, 985 (1983)

Article  ADS  Google Scholar 

留言 (0)

沒有登入
gif