A simple and cost effective method to measure Young’s modulus of a rod using moiré pattern

J.D. Owen, The application of searle’s single and double pendulum methods to single fibre rigidity measurements. J. Text. Inst. Trans. 56(6), T329–T339 (1965). https://doi.org/10.1080/19447026508662291

Article  Google Scholar 

G.F.C. Searle, in An Optical Interference Method of Measuring Young’s Modulus for Rods. Mathematical Proceedings of the Cambridge Philosophical Society, vol. 22 (1924), pp. 475–480. https://doi.org/10.1017/S0305004100014389

P. Smith, An Introduction to Structural Mechanics, 1st edn. (Macmillan International Higher Education, 2001), p. 83

K.D. Baveja, Dynamic method of measuring young’s modulus of elasticity. J. Sci. Instrum. 41(11), 662 (1964). https://doi.org/10.1088/0950-7671/41/11/302

Article  ADS  Google Scholar 

C.A. Sciammarella, B. Trentadue, F.M. Sciammarella, Measurement of bending stresses in shells of arbitrary shape using the reflection moir´e method. Exp. Mech. 40(3), 282–288 (2000). https://doi.org/10.1007/BF02327501

Article  Google Scholar 

B.S.-J. Kang, S.M. Anderson, Three-dimensional crack tip deformation measurement using combined moire-sagnac interferometry. Exp. Mech. 41(1), 84–91 (2001). https://doi.org/10.1007/BF02323109

Article  Google Scholar 

Z. Wang, J.F. Cardenas-Garcia, B. Han, Inverse method to determine elastic constants using a circular disk and moir´e interferometry. Exp. Mech. 45(1), 27–34 (2005). https://doi.org/10.1007/BF02428987

Article  Google Scholar 

J.H. Lim, M.M. Ratnam, I.A. Azid, D. Mutharasu, Deflection measurement and determination of Young’s modulus of micro-cantilever using phase-shift shadow moir´e method. Exp. Mech. 50(7), 1051–1060 (2010). https://doi.org/10.1007/s11340-009-9307-9

Article  Google Scholar 

V. Saveljev, J. Kim, J.Y. Son, Y. Kim, G. Heo, Static moiré patterns in moving grids. Sci. Rep. 10(1), 14414 (2020). https://doi.org/10.1038/s41598-020-70427-x

Article  ADS  Google Scholar 

H. Wen, Z. Liu, C. Li, X. He, J. Rong, X. Huang, H. Xie, Centrosymmetric 3D deformation measurement using grid method with a single-camera. Exp. Mech. 57, 537–546 (2017). https://doi.org/10.1007/s11340-016-0227-1

Article  Google Scholar 

V. Saveljev, S.K. Kim, J. Kim, Moiré effect in displays: a tutorial. Opt. Eng. 57(3), 030803 (2018). https://doi.org/10.1117/1.OE.57.3.030803

Article  ADS  Google Scholar 

R. Maskeliūnas, K. Ragulskis, P. Paškevičius, A. Pauliukas, L. Ragulskis, Selection of number of gaps in superimposed moiré measurements. J. Measurements Eng. 3(4), 138–144 (2015)

Google Scholar 

O. Kafri, I. Glatt, The Physics of moir´e Metrology, 1st edn. (Wiley, New York, 1990), p. 19

Google Scholar 

G. Oster, Y. Nishijima, Moire patterns. Sci. Am. 208(5), 54–63 (1963). https://www.scientificamerican.com/issue/sa/1963/05-01/

Article  ADS  Google Scholar 

M. Ge Oster, Wasserman, C. Zwerling, Theoretical interpretation of moiré patterns. Josa. 54(2), 169–175 (1964). https://doi.org/10.1364/JOSA.54.000169

Article  ADS  Google Scholar 

R. Roy, J. Chatterjee, S. Chakraborty, K. Palodhi, in Measurement of Load on a Mobile LCD Screen Using Moiré Pattern. In Progress in Optomechatronics: Proceedings of the 20th International Symposium on Optomechatronic Technology (ISOT 2019), India, pp. 151–155 (2020). https://doi.org/10.1007/978-981-15-6467-3_21 (add)

K. Lin, Y. Yu, J. Xi, H. Li, Q. Guo, J. Tong, L. Su, A fiber-coupled self-mixing laser diode for the measurement of Young’s modulus. Sensors. 16(6), 92817 (2016). https://doi.org/10.3390/s16060928

Article  Google Scholar 

R.C. Schwarz, L.M. Kutt, J.M. Papazian, Measurement of residual stress using interferometric moiré: a new insight. Exp. Mech. 40(18), 271–281 (2000). https://doi.org/10.1007/BF02327500

Article  Google Scholar 

J.H. Lim, M.M. Ratnam, I.A. Azid, D. Mutharasu, Determination of Young’s modulus of epoxy coated polyethylene micro-cantilever using phase-shift shadow moiré method. Opt. Lasers Eng. 49(11), 1301–1308 (2011). https://doi.org/10.1016/j.optlaseng.2011.06.005

Article  Google Scholar 

C.A. Walker, Moir´e interferometry for strain analysis. Opt. Lasers Eng. 8(3–4), 213–262 (1988). https://doi.org/10.1016/0143-8166(88)90039-5

Article  Google Scholar 

D. Post, W.A. Baracat, High-sensitivity moiré interferometry—a simplified approach. Exp. Mech. 21(3), 100–104 (1981). https://doi.org/10.1007/BF02326365

Article  Google Scholar 

E. Gabrielyan, The basics of line moir´e patterns and optical speedup. arXiv Preprint Phys. 0703098 (2007). https://doi.org/10.48550/arXiv.physics/0703098

B.R. Boruah, Dynamic manipulation of a laser beam using a liquid crystal spatial light modulator. Am. J. Phys. 77(4), 331–336 (2009). https://doi.org/10.1119/1.3054349

Article  ADS  Google Scholar 

D. Kumar, A. Das, B.R. Boruah, A simple experimental arrangement to generate optical vortex beams. Rev. Sci. Instrum. 84(2), 026103 (2013). https://doi.org/10.1063/1.4790848

Article  ADS  Google Scholar 

G.F.C. Searle, On the elasticity of wires. The London, Edinburgh Dublin Philosophical Mag. J. Sci. 49(297), 193–199 (1900). https://doi.org/10.1080/14786440009463833

M. Li, Z. Feng, Accurate young’s modulus measurement based on rayleigh wave velocity and empirical poisson’s ratio. Rev. Sci. Instrum. 87(7), 075111 (2016). https://doi.org/10.1063/1.4958825

Article  ADS  Google Scholar 

K. Kvetan, M. Bucany, O. Bosak, M. Kubliha, J. Kotianov, Measuring of Young’s modulus of thin samples using the quick bending vibrations of searle’s pendulum. Acta Mechatronica-International Sci. J. about Mechatronics. 1(2), 1–5 (2016). https://actamechatronica.eu/index.php?stranka=2016_02

Google Scholar 

J.A. Cornell, R.D. Berger, Factors that influence the value of the coefficient of determination in simple linear and nonlinear regression models. Phytopathology, 77(1), 63–70,(1987). https://www.apsnet.org/publications/phytopathology/backissues/Documents/1987Abstracts/Phyto77_63.htm

C. Hagquist, M. Stenbeck, Goodness of fit in regression analysis–r 2 and g 2 reconsidered. Qual. Quantity. 32(3), 229–245 (1998). https://doi.org/10.1023/A:1004328601205

Article  Google Scholar 

Y. Chen, X. Li, L. Huang, X. Wang, C. Liu, F. Zhao, Y. Hua, P. Feng, Gum method for evaluation of measurement uncertainty: Bpl long wave time service monitoring. Measurement. 189, 110459 (2022). https://doi.org/10.1016/j.measurement.2021.110459

Article  Google Scholar 

M. Ashby, Material Property data for Engineering Materials, 4th edn. (Cambridge University, Engineering Department and Granta Design, 2016), p. 9

Google Scholar 

留言 (0)

沒有登入
gif