J.D. Owen, The application of searle’s single and double pendulum methods to single fibre rigidity measurements. J. Text. Inst. Trans. 56(6), T329–T339 (1965). https://doi.org/10.1080/19447026508662291
G.F.C. Searle, in An Optical Interference Method of Measuring Young’s Modulus for Rods. Mathematical Proceedings of the Cambridge Philosophical Society, vol. 22 (1924), pp. 475–480. https://doi.org/10.1017/S0305004100014389
P. Smith, An Introduction to Structural Mechanics, 1st edn. (Macmillan International Higher Education, 2001), p. 83
K.D. Baveja, Dynamic method of measuring young’s modulus of elasticity. J. Sci. Instrum. 41(11), 662 (1964). https://doi.org/10.1088/0950-7671/41/11/302
C.A. Sciammarella, B. Trentadue, F.M. Sciammarella, Measurement of bending stresses in shells of arbitrary shape using the reflection moir´e method. Exp. Mech. 40(3), 282–288 (2000). https://doi.org/10.1007/BF02327501
B.S.-J. Kang, S.M. Anderson, Three-dimensional crack tip deformation measurement using combined moire-sagnac interferometry. Exp. Mech. 41(1), 84–91 (2001). https://doi.org/10.1007/BF02323109
Z. Wang, J.F. Cardenas-Garcia, B. Han, Inverse method to determine elastic constants using a circular disk and moir´e interferometry. Exp. Mech. 45(1), 27–34 (2005). https://doi.org/10.1007/BF02428987
J.H. Lim, M.M. Ratnam, I.A. Azid, D. Mutharasu, Deflection measurement and determination of Young’s modulus of micro-cantilever using phase-shift shadow moir´e method. Exp. Mech. 50(7), 1051–1060 (2010). https://doi.org/10.1007/s11340-009-9307-9
V. Saveljev, J. Kim, J.Y. Son, Y. Kim, G. Heo, Static moiré patterns in moving grids. Sci. Rep. 10(1), 14414 (2020). https://doi.org/10.1038/s41598-020-70427-x
H. Wen, Z. Liu, C. Li, X. He, J. Rong, X. Huang, H. Xie, Centrosymmetric 3D deformation measurement using grid method with a single-camera. Exp. Mech. 57, 537–546 (2017). https://doi.org/10.1007/s11340-016-0227-1
V. Saveljev, S.K. Kim, J. Kim, Moiré effect in displays: a tutorial. Opt. Eng. 57(3), 030803 (2018). https://doi.org/10.1117/1.OE.57.3.030803
R. Maskeliūnas, K. Ragulskis, P. Paškevičius, A. Pauliukas, L. Ragulskis, Selection of number of gaps in superimposed moiré measurements. J. Measurements Eng. 3(4), 138–144 (2015)
O. Kafri, I. Glatt, The Physics of moir´e Metrology, 1st edn. (Wiley, New York, 1990), p. 19
G. Oster, Y. Nishijima, Moire patterns. Sci. Am. 208(5), 54–63 (1963). https://www.scientificamerican.com/issue/sa/1963/05-01/
M. Ge Oster, Wasserman, C. Zwerling, Theoretical interpretation of moiré patterns. Josa. 54(2), 169–175 (1964). https://doi.org/10.1364/JOSA.54.000169
R. Roy, J. Chatterjee, S. Chakraborty, K. Palodhi, in Measurement of Load on a Mobile LCD Screen Using Moiré Pattern. In Progress in Optomechatronics: Proceedings of the 20th International Symposium on Optomechatronic Technology (ISOT 2019), India, pp. 151–155 (2020). https://doi.org/10.1007/978-981-15-6467-3_21 (add)
K. Lin, Y. Yu, J. Xi, H. Li, Q. Guo, J. Tong, L. Su, A fiber-coupled self-mixing laser diode for the measurement of Young’s modulus. Sensors. 16(6), 92817 (2016). https://doi.org/10.3390/s16060928
R.C. Schwarz, L.M. Kutt, J.M. Papazian, Measurement of residual stress using interferometric moiré: a new insight. Exp. Mech. 40(18), 271–281 (2000). https://doi.org/10.1007/BF02327500
J.H. Lim, M.M. Ratnam, I.A. Azid, D. Mutharasu, Determination of Young’s modulus of epoxy coated polyethylene micro-cantilever using phase-shift shadow moiré method. Opt. Lasers Eng. 49(11), 1301–1308 (2011). https://doi.org/10.1016/j.optlaseng.2011.06.005
C.A. Walker, Moir´e interferometry for strain analysis. Opt. Lasers Eng. 8(3–4), 213–262 (1988). https://doi.org/10.1016/0143-8166(88)90039-5
D. Post, W.A. Baracat, High-sensitivity moiré interferometry—a simplified approach. Exp. Mech. 21(3), 100–104 (1981). https://doi.org/10.1007/BF02326365
E. Gabrielyan, The basics of line moir´e patterns and optical speedup. arXiv Preprint Phys. 0703098 (2007). https://doi.org/10.48550/arXiv.physics/0703098
B.R. Boruah, Dynamic manipulation of a laser beam using a liquid crystal spatial light modulator. Am. J. Phys. 77(4), 331–336 (2009). https://doi.org/10.1119/1.3054349
D. Kumar, A. Das, B.R. Boruah, A simple experimental arrangement to generate optical vortex beams. Rev. Sci. Instrum. 84(2), 026103 (2013). https://doi.org/10.1063/1.4790848
G.F.C. Searle, On the elasticity of wires. The London, Edinburgh Dublin Philosophical Mag. J. Sci. 49(297), 193–199 (1900). https://doi.org/10.1080/14786440009463833
M. Li, Z. Feng, Accurate young’s modulus measurement based on rayleigh wave velocity and empirical poisson’s ratio. Rev. Sci. Instrum. 87(7), 075111 (2016). https://doi.org/10.1063/1.4958825
K. Kvetan, M. Bucany, O. Bosak, M. Kubliha, J. Kotianov, Measuring of Young’s modulus of thin samples using the quick bending vibrations of searle’s pendulum. Acta Mechatronica-International Sci. J. about Mechatronics. 1(2), 1–5 (2016). https://actamechatronica.eu/index.php?stranka=2016_02
J.A. Cornell, R.D. Berger, Factors that influence the value of the coefficient of determination in simple linear and nonlinear regression models. Phytopathology, 77(1), 63–70,(1987). https://www.apsnet.org/publications/phytopathology/backissues/Documents/1987Abstracts/Phyto77_63.htm
C. Hagquist, M. Stenbeck, Goodness of fit in regression analysis–r 2 and g 2 reconsidered. Qual. Quantity. 32(3), 229–245 (1998). https://doi.org/10.1023/A:1004328601205
Y. Chen, X. Li, L. Huang, X. Wang, C. Liu, F. Zhao, Y. Hua, P. Feng, Gum method for evaluation of measurement uncertainty: Bpl long wave time service monitoring. Measurement. 189, 110459 (2022). https://doi.org/10.1016/j.measurement.2021.110459
M. Ashby, Material Property data for Engineering Materials, 4th edn. (Cambridge University, Engineering Department and Granta Design, 2016), p. 9
留言 (0)